华夏仁家 发表于 2023-2-13 10:09:48

使用cnn,bpnn,lstm实现mnist数据集的分类

1.cnn

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms

# 设置随机数种子
torch.manual_seed(0)

# 超参数
EPOCH = 1# 训练整批数据的次数
BATCH_SIZE = 50
DOWNLOAD_MNIST = False# 表示还没有下载数据集,如果数据集下载好了就写False

# 加载 MNIST 数据集
train_dataset = datasets.MNIST(
    root="./mnist",
    train=True,#True表示是训练集
    transform=transforms.ToTensor(),
    download=False)
test_dataset = datasets.MNIST(
    root="./mnist",
    train=False,#Flase表示测试集
    transform=transforms.ToTensor(),
    download=False)

# 将数据集放入 DataLoader 中
train_loader = torch.utils.data.DataLoader(
    dataset=train_dataset,
    batch_size=100,#每个批次读取的数据样本数
    shuffle=True)#是否将数据打乱,在这种情况下为True,表示每次读取的数据是随机的
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=100, shuffle=False)

# 为了节约时间, 我们测试时只测试前2000个
test_x = torch.unsqueeze(test_dataset.test_data, dim=1).type(torch.FloatTensor)[
         :2000] / 255.# shape from (2000, 28, 28) to (2000, 1, 28, 28), value in range(0,1)
test_y = test_dataset.test_labels[:2000]

# 定义卷积神经网络模型
class CNN(nn.Module):
    def __init__(self):
      super(CNN, self).__init__()
      self.conv1 = nn.Conv2d(#输入图像的大小为(28,28,1)
            in_channels=1,#当前输入特征图的个数
            out_channels=32,#输出特征图的个数
            kernel_size=3,#卷积核大小,在一个3*3空间里对当前输入的特征图像进行特征提取
            stride=1,#步长:卷积窗口每隔一个单位滑动一次
            padding=1)#如果希望卷积后大小跟原来一样,需要设置padding=(kernel_size-1)/2
      #第一层结束后图像大小为(28,28,32)32是输出图像个数,28计算方法为(h-k+2p)/s+1=(28-3+2*1)/1 +1=28
      self.pool = nn.MaxPool2d(kernel_size=2, stride=2)#可以缩小输入图像的尺寸,同时也可以防止过拟合
      #通过池化层之后图像大小变为(14,14,32)
      self.conv2 = nn.Conv2d(#输入图像大小为(14,14,32)
            in_channels=32,#第一层的输出特征图的个数当做第二层的输入特征图的个数
            out_channels=64,
            kernel_size=3,
            stride=1,
            padding=1)#二层卷积之后图像大小为(14,14,64)

      self.fc = nn.Linear(64 * 7 * 7, 10)#10表示最终输出的

    # 下面定义x的传播路线
    def forward(self, x):
      x = self.pool(F.relu(self.conv1(x)))# x先通过conv1
      x = self.pool(F.relu(self.conv2(x)))# 再通过conv2
      x = x.view(-1, 64 * 7 * 7)
      x = self.fc(x)
      return x

# 实例化卷积神经网络模型
model = CNN()

# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
#lr(学习率)是控制每次更新的参数的大小的超参数
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)

# 训练模型
for epoch in range(1):
    for i, (images, labels) in enumerate(train_loader):
      outputs = model(images)# 先将数据放到cnn中计算output
      loss = criterion(outputs, labels)# 输出和真实标签的loss,二者位置不可颠倒
      optimizer.zero_grad()# 清除之前学到的梯度的参数
      loss.backward()# 反向传播,计算梯度
      optimizer.step()#应用梯度
      if i % 50 == 0:
            data_all = model(test_x)#不分开写就会出现ValueError: too many values to unpack (expected 2)
            last_layer = data_all
            test_output = data_all
            pred_y = torch.max(test_output, 1).data.numpy()
            accuracy = float((pred_y == test_y.data.numpy()).astype(int).sum()) / float(test_y.size(0))
            print('Epoch: ', epoch, '| train loss: %.4f' % loss.data.numpy(), '| test accuracy: %.4f' % accuracy)

# print 10 predictions from test data
data_all1 = model(test_x[:10])
test_output = data_all1
_ = data_all1
pred_y = torch.max(test_output, 1).data.numpy()
print(pred_y, 'prediction number')
print(test_y[:10].numpy(), 'real number')2.bpnn

import torch
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as func
#import matplotlib.pyplot as plt
import torch.utils.data as Data
import torchvision

# 超参数

EPOCH = 2 # 训练一个回合
BATCH_SIZE = 50 # 每次取样50个进行训练
LR = 0.001 # 学习率0.01
# DOWNLOAD_MNIST = False

# 提取训练数据
# 将图像格式转为tensor格式
train_data = torchvision.datasets.MNIST(
    root='./mnist',
    train=True,
    transform=torchvision.transforms.ToTensor(),
    # download = DOWNLOAD_MNIST,
)

# 选取相应批次的图像
train_loader = Data.DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True)

# 加载测试图像
test_data = torchvision.datasets.MNIST(
    root='./mnist',
    train=False,
    transform=torchvision.transforms.ToTensor(),
)

test_loader = Data.DataLoader(dataset=test_data,batch_size=BATCH_SIZE)


class BPNN(nn.Module):
    def __init__(self):
      super(BPNN, self).__init__()
      # 创建容器
      # 按照sequential内模块的顺序执行
      self.conv1 = nn.Sequential(
            # 二维卷积
            nn.Linear(28,64),
            nn.ReLU(),
      )
      self.conv2 = nn.Sequential(
            nn.Linear(64,128),
            nn.ReLU(),
      )
      self.conv3 = nn.Sequential(
            nn.Linear(128, 32),
            nn.ReLU(),
      )
      # 全连接层
      self.out = nn.Linear(32 * 28, 10)

    def forward(self, x):
      x = self.conv1(x)
      x = self.conv2(x)
      x = self.conv3(x)
      x = x.view(x.size(0), -1)# 相当于维度转换,这里保留0维(batch_size),将后面的三个维度展平
      output = self.out(x)
      return output


bpnn = BPNN()

# Adam优化器
optimizer = torch.optim.Adam(bpnn.parameters(), lr=LR)
# loss函数
loss_func = nn.CrossEntropyLoss()
# 迭代训练
for epoch in range(EPOCH):
    for step, (batch_x, batch_y) in enumerate(train_loader):
      # b_x = Variable(batch_x)
      # b_y = Variable(batch_y)

      out = bpnn(batch_x)
      loss = loss_func(out, batch_y)
      optimizer.zero_grad()# 梯度降为0
      loss.backward()# 误差反向传递
      optimizer.step()# 以学习效率优化梯度

equal = 0
i = 0
for step,(test_x,test_y) in enumerate(test_loader):
    if step % 10 == 0:
      i += 1
      test_output = bpnn(test_x)
      pred_y = torch.max(test_output, 1).data.squeeze()
      acc = (pred_y == test_y).sum().float() / test_y.size(0)
      print('Epoch: ', epoch, '| train loss: %.4f' % loss.data.float(), 'test acc: ', acc.numpy())
      equal += acc.numpy()
print(equal/i)

test_output = bpnn(test_x[:10])
pred_y = torch.max(test_output, 1).data.squeeze()
print(pred_y, 'prediction number')
print(test_y[:10].numpy(), 'real number')3.lstm

import torch
from torch import nn
import torchvision.datasets as dsets
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import numpy as np

torch.manual_seed(1)# reproducible

# Hyper Parameters
EPOCH = 1# 训练整批数据多少次, 为了节约时间, 我们只训练一次
BATCH_SIZE = 64
TIME_STEP = 28# rnn 时间步数 / 图片高度
INPUT_SIZE = 28# rnn 每步输入值 / 图片每行像素
LR = 0.01# learning rate
DOWNLOAD_MNIST = False# 如果你已经下载好了mnist数据就写上 Fasle

# Mnist 手写数字
train_data = dsets.MNIST(
    root='./mnist/',# 保存或者提取位置
    train=True,# this is training data
    transform=transforms.ToTensor(),# 转换 PIL.Image or numpy.ndarray 成
    # torch.FloatTensor (C x H x W), 训练的时候 normalize 成 区间
    download=DOWNLOAD_MNIST,# 没下载就下载, 下载了就不用再下了
)

test_data = dsets.MNIST(root='./mnist/', train=False)

# 批训练 50samples, 1 channel, 28x28 (50, 1, 28, 28)
train_loader = torch.utils.data.DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True)

# 为了节约时间, 我们测试时只测试前2000个
test_x = torch.unsqueeze(test_data.test_data, dim=1).type(torch.FloatTensor)[
         :2000] / 255.# shape from (2000, 28, 28) to (2000, 1, 28, 28), value in range(0,1)
test_y = test_data.test_labels[:2000]


class RNN(nn.Module):
    def __init__(self):
      super(RNN, self).__init__()

      self.rnn = nn.LSTM(# LSTM 效果要比 nn.RNN() 好多了
            input_size=28,# 图片每行的数据像素点
            hidden_size=64,# rnn hidden unit
            num_layers=1,# 有几层 RNN layers
            batch_first=True,# input & output 会是以 batch size 为第一维度的特征集 e.g. (batch, time_step, input_size)
      )

      self.out = nn.Linear(64, 10)# 输出层,接入线性层

    def forward(self, x):# 必须有这个方法
      # x shape (batch, time_step, input_size)
      # r_out shape (batch, time_step, output_size)
      # h_n shape (n_layers, batch, hidden_size)   LSTM 有两个 hidden states, h_n 是分线, h_c 是主线
      # h_c shape (n_layers, batch, hidden_size)
      r_out, (h_n, h_c) = self.rnn(x, None)# None 表示 hidden state 会用全0的 state
      # 当RNN运行结束时刻,(h_n, h_c)表示最后的一组hidden states,这里用不到

      # 选取最后一个时间点的 r_out 输出
      # 这里 r_out[:, -1, :] 的值也是 h_n 的值
      out = self.out(r_out[:, -1, :])# (batch_size, time step, input),这里time step选择最后一个时刻
      # output_np = out.detach().numpy()# 可以使用numpy的sciview监视每次结果
      return out


rnn = RNN()
print(rnn)

optimizer = torch.optim.Adam(rnn.parameters(), lr=LR)# optimize all parameters
loss_func = nn.CrossEntropyLoss()# the target label is not one-hotted

# training and testing
for epoch in range(EPOCH):
    for step, (x, b_y) in enumerate(train_loader):# gives batch data
      b_x = x.view(-1, 28, 28)# reshape x to (batch, time_step, input_size)

      output = rnn(b_x)# rnn output
      loss = loss_func(output, b_y)# cross entropy loss
      optimizer.zero_grad()# clear gradients for this training step
      loss.backward()# backpropagation, compute gradients
      optimizer.step()# apply gradients

      # output_np = output.detach().numpy()

      if step % 50 == 0:
            test_x = test_x.view(-1, 28, 28)
            test_output = rnn(test_x)
            pred_y = torch.max(test_output, 1).data.squeeze()
            acc = (pred_y == test_y).sum().float() / test_y.size(0)
            print('Epoch: ', epoch, '| train loss: %.4f' % loss.data.float(), 'test acc: ', acc.numpy())

test_output = rnn(test_x[:10].view(-1, 28, 28))
pred_y = torch.max(test_output, 1).data.numpy().squeeze()
print(pred_y, 'prediction number')
print(test_y[:10], 'real number')
来源:https://www.cnblogs.com/twq46/p/17115263.html
免责声明:由于采集信息均来自互联网,如果侵犯了您的权益,请联系我们【E-Mail:cb@itdo.tech】 我们会及时删除侵权内容,谢谢合作!
页: [1]
查看完整版本: 使用cnn,bpnn,lstm实现mnist数据集的分类