|
1.cnn
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- import torch.optim as optim
- from torchvision import datasets, transforms
- # 设置随机数种子
- torch.manual_seed(0)
- # 超参数
- EPOCH = 1 # 训练整批数据的次数
- BATCH_SIZE = 50
- DOWNLOAD_MNIST = False # 表示还没有下载数据集,如果数据集下载好了就写False
- # 加载 MNIST 数据集
- train_dataset = datasets.MNIST(
- root="./mnist",
- train=True,#True表示是训练集
- transform=transforms.ToTensor(),
- download=False)
- test_dataset = datasets.MNIST(
- root="./mnist",
- train=False,#Flase表示测试集
- transform=transforms.ToTensor(),
- download=False)
- # 将数据集放入 DataLoader 中
- train_loader = torch.utils.data.DataLoader(
- dataset=train_dataset,
- batch_size=100,#每个批次读取的数据样本数
- shuffle=True)#是否将数据打乱,在这种情况下为True,表示每次读取的数据是随机的
- test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=100, shuffle=False)
- # 为了节约时间, 我们测试时只测试前2000个
- test_x = torch.unsqueeze(test_dataset.test_data, dim=1).type(torch.FloatTensor)[
- :2000] / 255. # shape from (2000, 28, 28) to (2000, 1, 28, 28), value in range(0,1)
- test_y = test_dataset.test_labels[:2000]
- # 定义卷积神经网络模型
- class CNN(nn.Module):
- def __init__(self):
- super(CNN, self).__init__()
- self.conv1 = nn.Conv2d(#输入图像的大小为(28,28,1)
- in_channels=1,#当前输入特征图的个数
- out_channels=32,#输出特征图的个数
- kernel_size=3,#卷积核大小,在一个3*3空间里对当前输入的特征图像进行特征提取
- stride=1,#步长:卷积窗口每隔一个单位滑动一次
- padding=1)#如果希望卷积后大小跟原来一样,需要设置padding=(kernel_size-1)/2
- #第一层结束后图像大小为(28,28,32)32是输出图像个数,28计算方法为(h-k+2p)/s+1=(28-3+2*1)/1 +1=28
- self.pool = nn.MaxPool2d(kernel_size=2, stride=2)#可以缩小输入图像的尺寸,同时也可以防止过拟合
- #通过池化层之后图像大小变为(14,14,32)
- self.conv2 = nn.Conv2d(#输入图像大小为(14,14,32)
- in_channels=32,#第一层的输出特征图的个数当做第二层的输入特征图的个数
- out_channels=64,
- kernel_size=3,
- stride=1,
- padding=1)#二层卷积之后图像大小为(14,14,64)
- self.fc = nn.Linear(64 * 7 * 7, 10)#10表示最终输出的
- # 下面定义x的传播路线
- def forward(self, x):
- x = self.pool(F.relu(self.conv1(x)))# x先通过conv1
- x = self.pool(F.relu(self.conv2(x)))# 再通过conv2
- x = x.view(-1, 64 * 7 * 7)
- x = self.fc(x)
- return x
- # 实例化卷积神经网络模型
- model = CNN()
- # 定义损失函数和优化器
- criterion = nn.CrossEntropyLoss()
- #lr(学习率)是控制每次更新的参数的大小的超参数
- optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
- # 训练模型
- for epoch in range(1):
- for i, (images, labels) in enumerate(train_loader):
- outputs = model(images) # 先将数据放到cnn中计算output
- loss = criterion(outputs, labels)# 输出和真实标签的loss,二者位置不可颠倒
- optimizer.zero_grad()# 清除之前学到的梯度的参数
- loss.backward() # 反向传播,计算梯度
- optimizer.step()#应用梯度
- if i % 50 == 0:
- data_all = model(test_x)#不分开写就会出现ValueError: too many values to unpack (expected 2)
- last_layer = data_all
- test_output = data_all
- pred_y = torch.max(test_output, 1)[1].data.numpy()
- accuracy = float((pred_y == test_y.data.numpy()).astype(int).sum()) / float(test_y.size(0))
- print('Epoch: ', epoch, '| train loss: %.4f' % loss.data.numpy(), '| test accuracy: %.4f' % accuracy)
- # print 10 predictions from test data
- data_all1 = model(test_x[:10])
- test_output = data_all1
- _ = data_all1
- pred_y = torch.max(test_output, 1)[1].data.numpy()
- print(pred_y, 'prediction number')
- print(test_y[:10].numpy(), 'real number')
复制代码 2.bpnn
- import torch
- from torch.autograd import Variable
- import torch.nn as nn
- import torch.nn.functional as func
- #import matplotlib.pyplot as plt
- import torch.utils.data as Data
- import torchvision
- # 超参数
- EPOCH = 2 # 训练一个回合
- BATCH_SIZE = 50 # 每次取样50个进行训练
- LR = 0.001 # 学习率0.01
- # DOWNLOAD_MNIST = False
- # 提取训练数据
- # 将图像格式转为tensor格式
- train_data = torchvision.datasets.MNIST(
- root='./mnist',
- train=True,
- transform=torchvision.transforms.ToTensor(),
- # download = DOWNLOAD_MNIST,
- )
- # 选取相应批次的图像
- train_loader = Data.DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True)
- # 加载测试图像
- test_data = torchvision.datasets.MNIST(
- root='./mnist',
- train=False,
- transform=torchvision.transforms.ToTensor(),
- )
- test_loader = Data.DataLoader(dataset=test_data,batch_size=BATCH_SIZE)
- class BPNN(nn.Module):
- def __init__(self):
- super(BPNN, self).__init__()
- # 创建容器
- # 按照sequential内模块的顺序执行
- self.conv1 = nn.Sequential(
- # 二维卷积
- nn.Linear(28,64),
- nn.ReLU(),
- )
- self.conv2 = nn.Sequential(
- nn.Linear(64,128),
- nn.ReLU(),
- )
- self.conv3 = nn.Sequential(
- nn.Linear(128, 32),
- nn.ReLU(),
- )
- # 全连接层
- self.out = nn.Linear(32 * 28, 10)
- def forward(self, x):
- x = self.conv1(x)
- x = self.conv2(x)
- x = self.conv3(x)
- x = x.view(x.size(0), -1) # 相当于维度转换,这里保留0维(batch_size),将后面的三个维度展平
- output = self.out(x)
- return output
- bpnn = BPNN()
- # Adam优化器
- optimizer = torch.optim.Adam(bpnn.parameters(), lr=LR)
- # loss函数
- loss_func = nn.CrossEntropyLoss()
- # 迭代训练
- for epoch in range(EPOCH):
- for step, (batch_x, batch_y) in enumerate(train_loader):
- # b_x = Variable(batch_x)
- # b_y = Variable(batch_y)
- out = bpnn(batch_x)
- loss = loss_func(out, batch_y)
- optimizer.zero_grad() # 梯度降为0
- loss.backward() # 误差反向传递
- optimizer.step() # 以学习效率优化梯度
- equal = 0
- i = 0
- for step,(test_x,test_y) in enumerate(test_loader):
- if step % 10 == 0:
- i += 1
- test_output = bpnn(test_x)
- pred_y = torch.max(test_output, 1)[1].data.squeeze()
- acc = (pred_y == test_y).sum().float() / test_y.size(0)
- print('Epoch: ', epoch, '| train loss: %.4f' % loss.data.float(), 'test acc: ', acc.numpy())
- equal += acc.numpy()
- print(equal/i)
- test_output = bpnn(test_x[:10])
- pred_y = torch.max(test_output, 1)[1].data.squeeze()
- print(pred_y, 'prediction number')
- print(test_y[:10].numpy(), 'real number')
复制代码 3.lstm
- import torch
- from torch import nn
- import torchvision.datasets as dsets
- import torchvision.transforms as transforms
- import matplotlib.pyplot as plt
- import numpy as np
- torch.manual_seed(1) # reproducible
- # Hyper Parameters
- EPOCH = 1 # 训练整批数据多少次, 为了节约时间, 我们只训练一次
- BATCH_SIZE = 64
- TIME_STEP = 28 # rnn 时间步数 / 图片高度
- INPUT_SIZE = 28 # rnn 每步输入值 / 图片每行像素
- LR = 0.01 # learning rate
- DOWNLOAD_MNIST = False # 如果你已经下载好了mnist数据就写上 Fasle
- # Mnist 手写数字
- train_data = dsets.MNIST(
- root='./mnist/', # 保存或者提取位置
- train=True, # this is training data
- transform=transforms.ToTensor(), # 转换 PIL.Image or numpy.ndarray 成
- # torch.FloatTensor (C x H x W), 训练的时候 normalize 成 [0.0, 1.0] 区间
- download=DOWNLOAD_MNIST, # 没下载就下载, 下载了就不用再下了
- )
- test_data = dsets.MNIST(root='./mnist/', train=False)
- # 批训练 50samples, 1 channel, 28x28 (50, 1, 28, 28)
- train_loader = torch.utils.data.DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True)
- # 为了节约时间, 我们测试时只测试前2000个
- test_x = torch.unsqueeze(test_data.test_data, dim=1).type(torch.FloatTensor)[
- :2000] / 255. # shape from (2000, 28, 28) to (2000, 1, 28, 28), value in range(0,1)
- test_y = test_data.test_labels[:2000]
- class RNN(nn.Module):
- def __init__(self):
- super(RNN, self).__init__()
- self.rnn = nn.LSTM( # LSTM 效果要比 nn.RNN() 好多了
- input_size=28, # 图片每行的数据像素点
- hidden_size=64, # rnn hidden unit
- num_layers=1, # 有几层 RNN layers
- batch_first=True, # input & output 会是以 batch size 为第一维度的特征集 e.g. (batch, time_step, input_size)
- )
- self.out = nn.Linear(64, 10) # 输出层,接入线性层
- def forward(self, x): # 必须有这个方法
- # x shape (batch, time_step, input_size)
- # r_out shape (batch, time_step, output_size)
- # h_n shape (n_layers, batch, hidden_size) LSTM 有两个 hidden states, h_n 是分线, h_c 是主线
- # h_c shape (n_layers, batch, hidden_size)
- r_out, (h_n, h_c) = self.rnn(x, None) # None 表示 hidden state 会用全0的 state
- # 当RNN运行结束时刻,(h_n, h_c)表示最后的一组hidden states,这里用不到
- # 选取最后一个时间点的 r_out 输出
- # 这里 r_out[:, -1, :] 的值也是 h_n 的值
- out = self.out(r_out[:, -1, :]) # (batch_size, time step, input),这里time step选择最后一个时刻
- # output_np = out.detach().numpy() # 可以使用numpy的sciview监视每次结果
- return out
- rnn = RNN()
- print(rnn)
- optimizer = torch.optim.Adam(rnn.parameters(), lr=LR) # optimize all parameters
- loss_func = nn.CrossEntropyLoss() # the target label is not one-hotted
- # training and testing
- for epoch in range(EPOCH):
- for step, (x, b_y) in enumerate(train_loader): # gives batch data
- b_x = x.view(-1, 28, 28) # reshape x to (batch, time_step, input_size)
- output = rnn(b_x) # rnn output
- loss = loss_func(output, b_y) # cross entropy loss
- optimizer.zero_grad() # clear gradients for this training step
- loss.backward() # backpropagation, compute gradients
- optimizer.step() # apply gradients
- # output_np = output.detach().numpy()
- if step % 50 == 0:
- test_x = test_x.view(-1, 28, 28)
- test_output = rnn(test_x)
- pred_y = torch.max(test_output, 1)[1].data.squeeze()
- acc = (pred_y == test_y).sum().float() / test_y.size(0)
- print('Epoch: ', epoch, '| train loss: %.4f' % loss.data.float(), 'test acc: ', acc.numpy())
- test_output = rnn(test_x[:10].view(-1, 28, 28))
- pred_y = torch.max(test_output, 1)[1].data.numpy().squeeze()
- print(pred_y, 'prediction number')
- print(test_y[:10], 'real number')
复制代码 来源:https://www.cnblogs.com/twq46/p/17115263.html
免责声明:由于采集信息均来自互联网,如果侵犯了您的权益,请联系我们【E-Mail:cb@itdo.tech】 我们会及时删除侵权内容,谢谢合作! |
|