|
Rapid存储引擎简介
从GreatSQL 8.0.32-25版本开始,新增Rapid存储引擎,该引擎使得GreatSQL能满足联机分析(OLAP)查询请求。
Rapid引擎采用插件(Plugin)方式嵌入GreatSQL中,可以在线动态安装或卸载。
Rapid引擎不会直接面对客户端和应用程序,用户无需修改原有的数据访问方式。它是一个无共享、内存化、混合列式存储的查询处理引擎,其设计目的是为了高性能的处理分析型查询。
并且在TPC-H性能表现优异在32C64G测试机环境下,TPC-H 100G测试中22条SQL总耗时 仅需不到80秒
下面是几个不同TPC-H数据量级的压缩率数据:
TPC-H仓库大小InnoDB引擎数据文件大小Rapid引擎数据文件大小压缩率TPC-H 1GB20030260762765742087.24TPC-H 100GB184570593436287283732486.42TPC-H 500GB11677951428481467230453767.96经过GreatSQL社区的测试分析可以看出,相较于InnoDB存储引擎,Rapid存储引擎在存储效率上获得了极大提升。在存放相同的数据集时,Rapid的数据文件所需要的空间仅为InnoDB的6~7分之1,大约 降低了85% 左右。
真实生产案例测试
为了全面验证AP引擎的性能提升,我们成功获取了真实生产环境下的SQL语句、表结构以及经过脱敏处理的数据。在此,特别感谢潲同学和贵司的协助!
测试环境介绍
本次测试采用的环境是 Arch Linux x86_64,机器配置为12C15G- $ uname -a
- Linux myarch 6.6.3-arch1-1 #1 SMP PREEMPT_DYNAMIC Wed, 29 Nov 2023 00:37:40 +0000 x86_64 GNU/Linux
- $ cat /proc/cpuinfo | grep "processor" | wc -l
- 12
- $ free -h
- total
- Mem: 15Gi
复制代码 采用的GreatSQL版本为 GreatSQL 8.0.32-25 版本- $ mysql --version
- mysql Ver 8.0.32-25 for Linux on x86_64 (GreatSQL, Release 25, Revision 79f57097e3f)
复制代码 真实生产SQL
展示即将进行测试的生产SQL(这里不深入讨论该SQL是否存在优化的可能性):- select c.id, c.dept_id, c.user_id, c.type, c.source, c.charge_no, c.amount, c.from_bank, c.to_bank, c.receipt,c.status, c.remark, c.create_by, c.create_time, c.update_by, c.update_time,c.reason,c.fr_no
- , d.dept_name, dt.company_name, cp.company_name
- from charge c
- left join dept d on c.dept_id = d.dept_id
- left join user u on c.user_id = u.user_id
- left join dept_tax dt on c.dept_id = dt.dept_id
- left join dept_info di on c.dept_id = di.dept_id
- left join company_bank cb on di.sign_cbid = cb.id
- left join company cp on cb.company_id = cp.company_id
- limit 3313445,10;
复制代码 真实生产表结构
生产SQL涉及7张表,我们将逐一展示每张表的表结构。为了保护隐私,我们对部分字段进行了脱敏处理以及一些微调
dept表- CREATE TABLE `dept` (
- `dept_id` bigint(20) NOT NULL AUTO_INCREMENT,
- `parent_id` bigint(20) DEFAULT '0',
- `ancestors` varchar(50) DEFAULT '',
- `dept_name` varchar(30) DEFAULT '',
- ......
- `create_time` datetime DEFAULT NULL,
- `update_by` varchar(64) DEFAULT '',
- `update_time` datetime DEFAULT NULL,
- PRIMARY KEY (`dept_id`)
- ) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COMMENT='部门表'
复制代码 user表- CREATE TABLE `user` (
- `user_id` bigint(20) NOT NULL AUTO_INCREMENT,
- `dept_id` bigint(20) DEFAULT NULL,
- `fans_id` bigint(20) DEFAULT NULL,
- `login_name` varchar(30) NOT NULL,
- `user_name` varchar(30) NOT NULL,
- `alias` varchar(100) DEFAULT NULL,
- `user_type` varchar(2) DEFAULT '00',
- `email` varchar(50) DEFAULT '',
- `phonenumber` varchar(11) DEFAULT '',
- `sex` char(1) DEFAULT '0',
- ......
- `create_by` varchar(64) DEFAULT '',
- `create_time` datetime DEFAULT NULL,
- `update_by` varchar(64) DEFAULT '',
- `update_time` datetime DEFAULT NULL,
- `remark` varchar(500) DEFAULT NULL,
- PRIMARY KEY (`user_id`)
- ) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COMMENT='用户表'
复制代码 dept_tax表- CREATE TABLE `dept_tax` (
- `id` bigint(20) NOT NULL AUTO_INCREMENT,
- `dept_id` bigint(20) NOT NULL,
- `company_name` varchar(50) NOT NULL,
- `tax_no` varchar(50) DEFAULT NULL,
- `tax_type` varchar(30) DEFAULT NULL,
- ......
- `create_by` varchar(50) DEFAULT '',
- `create_time` datetime DEFAULT NULL,
- `update_by` varchar(50) DEFAULT '',
- `update_time` datetime DEFAULT NULL,
- PRIMARY KEY (`id`)
- ) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COMMENT='信息表'
复制代码 dept_info表- CREATE TABLE `dept_info` (
- `id` bigint(20) NOT NULL AUTO_INCREMENT,
- `dept_id` bigint(20) NOT NULL,
- `customer_id` bigint(20) DEFAULT NULL,
- `dept_type` char(1) DEFAULT '1',
- `industry_type` char(1) DEFAULT '0',
- `dept_flag` char(1) DEFAULT '1',
- `dept_kind` char(1) DEFAULT '0',
- `bus_scope` varchar(10) DEFAULT '1',
- `channel_id` bigint(20) DEFAULT NULL,
- ......
- PRIMARY KEY (`id`)
- ) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COMMENT='信息表'
复制代码 company_bank表- CREATE TABLE `company_bank` (
- `id` bigint(20) NOT NULL AUTO_INCREMENT,
- `company_id` bigint(20) DEFAULT NULL,
- `bank_name` varchar(50) DEFAULT NULL,
- `bank_card` varchar(30) DEFAULT NULL,
- PRIMARY KEY (`id`)
- ) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4
复制代码 company表- CREATE TABLE `company` (
- `company_id` bigint(20) NOT NULL AUTO_INCREMENT,
- `company_name` varchar(100) DEFAULT NULL,
- PRIMARY KEY (`company_id`)
- ) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4
复制代码 charge表- CREATE TABLE `charge` (
- `id` bigint(20) NOT NULL AUTO_INCREMENT,
- `dept_id` bigint(20) NOT NULL,
- `user_id` bigint(20) DEFAULT NULL,
- `type` char(1) DEFAULT NULL,
- ......
- `create_time` datetime DEFAULT NULL,
- `update_by` varchar(50) DEFAULT '',
- `update_time` datetime DEFAULT NULL,
- PRIMARY KEY (`id`)
- ) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4
复制代码不深入探讨SQL和表结构是否存在优化的可能性,只验证AP引擎提升查询测试。
加载数据
鉴于原始数据较为有限,为了更明显地进行测试,我们为每张表生成了一些新数据,来看下各表数据和表空间大小是多少:
表名数据量表空间大小dept1100010Muser10000031Mdept_tax1000088Mcharge1000000184Mcompany1000160Kdept_info1000011Mcompany_bank1000176K未改造测试
待测试的SQL语句:- select c.id, c.dept_id, c.user_id, c.type, c.source, c.charge_no, c.amount, c.from_bank, c.to_bank, c.receipt,c.status, c.remark, c.create_by, c.create_time, c.update_by, c.update_time,c.reason,c.fr_no
- , d.dept_name, dt.company_name, cp.company_name
- from _charge c
- left join dept d on c.dept_id = d.dept_id
- left join user u on c.user_id = u.user_id
- left join dept_tax dt on c.dept_id = dt.dept_id
- left join dept_info di on c.dept_id = di.dept_id
- left join company_bank cb on di.sign_cbid = cb.id
- left join company cp on cb.company_id = cp.company_id
- limit 3313445,10;
复制代码 先不使用AP引擎测试查询五次:
测试次数耗时第一次10 rows in set (12.64 sec)第二次10 rows in set (12.77 sec)第三次10 rows in set (12.60 sec)第四次10 rows in set (12.61 sec)第五次10 rows in set (12.59 sec)可以看到五次测试结果都是稳定在12秒左右,平均耗时12.64/s:
使用Rapid引擎测试
启用Rapid引擎
- greatsql> INSTALL PLUGIN Rapid SONAME 'ha_rapid.so';
- greatsql> SHOW PLUGINS;
- +----------------------------------+----------+--------------------+----------------------+---------+
- | Name | Status | Type | Library | License |
- +----------------------------------+----------+--------------------+----------------------+---------+
- | binlog | ACTIVE | STORAGE ENGINE | NULL | GPL |
- ...
- | Rapid | ACTIVE | STORAGE ENGINE | ha_rapid.so | GPL |
- +----------------------------------+----------+--------------------+----------------------+---------+
- 55 rows in set (0.00 sec)
复制代码 加上Rapid辅助引擎
- greatsql> ALTER TABLE dept SECONDARY_ENGINE = rapid;
- Query OK, 0 rows affected (0.02 sec)
- Records: 0 Duplicates: 0 Warnings: 0
- greatsql> ALTER TABLE user SECONDARY_ENGINE = rapid;
- greatsql> ALTER TABLE charge SECONDARY_ENGINE = rapid;
- greatsql> ALTER TABLE company SECONDARY_ENGINE = rapid;
- greatsql> ALTER TABLE company_bank SECONDARY_ENGINE = rapid;
- greatsql> ALTER TABLE dept_info SECONDARY_ENGINE = rapid;
- greatsql> ALTER TABLE dept_tax SECONDARY_ENGINE = rapid;
复制代码 查看建表DDL,发现增加了 SECONDARY_ENGINE=rapid- greatsql> SHOW CREATE TABLE _company\G
- *************************** 1. row ***************************
- Table: company
- Create Table: CREATE TABLE `company` (
- `company_id` bigint NOT NULL AUTO_INCREMENT COMMENT '序号ID',
- `company_name` varchar(100) DEFAULT NULL COMMENT '签约主体',
- PRIMARY KEY (`company_id`)
- ) ENGINE=InnoDB AUTO_INCREMENT=1001 DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci SECONDARY_ENGINE=rapid
- 1 row in set (0.00 sec)
复制代码 数据全量导入Rapid引擎中
- greatsql> ALTER TABLE dept SECONDARY_LOAD;
- greatsql> ALTER TABLE user SECONDARY_LOAD;
- greatsql> ALTER TABLE charge SECONDARY_LOAD;
- greatsql> ALTER TABLE company SECONDARY_LOAD;
- greatsql> ALTER TABLE company_bank SECONDARY_LOAD;
- greatsql> ALTER TABLE dept_info SECONDARY_LOAD;
- greatsql> ALTER TABLE dept_tax SECONDARY_LOAD;
复制代码 开始测试Rapid引擎
有两种方式启用Rapid引擎
方式一- -- 设置use_secondary_engine=ON的时候,为保证查询语句能够使用rapid,
- -- 通常需要设置secondary_engine_cost_threshold = 0,或一个较小的阈值
- SET use_secondary_engine = ON;
- SET secondary_engine_cost_threshold = 0;
复制代码 方式二(不建议)- -- 修改会话变量,设置强制使用Rapid引擎
- SET use_secondary_engine = FORCED;
- -- 或执行SQL查询时指定HINT
- SELECT /*+ SET_VAR(use_secondary_engine=forced) */ ...省略 FROM from charge c;
复制代码 先使用方案二,执行SQL查询时指定HINT测试五次看看表现如何
待测试的SQL语句:- select /*+ SET_VAR(use_secondary_engine=forced) */ c.id, c.dept_id, c.user_id, c.type, c.source, c.charge_no, c.amount, c.from_bank, c.to_bank, c.receipt,c.status, c.remark, c.create_by, c.create_time, c.update_by, c.update_time,c.reason,c.fr_no
- , d.dept_name, dt.company_name, cp.company_name
- from _charge c
- left join dept d on c.dept_id = d.dept_id
- left join user u on c.user_id = u.user_id
- left join dept_tax dt on c.dept_id = dt.dept_id
- left join dept_info di on c.dept_id = di.dept_id
- left join company_bank cb on di.sign_cbid = cb.id
- left join company cp on cb.company_id = cp.company_id
- limit 3313445,10;
复制代码 同样测试查询五次:
测试次数耗时第一次10 rows in set (0.48 sec)第二次10 rows in set (0.47 sec)第三次10 rows in set (0.46 sec)第四次10 rows in set (0.48 sec)第五次10 rows in set (0.46 sec)可以看到Rapid引擎出手即是秒杀,平均耗时0.47/s:
改造前(平均耗时12.64/s)和改造后(平均耗时0.47/s)对比测试结果:
总体来说改造后约提升了26.9倍:
如果我们选择使用HINT进行改造,就需要对原SQL语句进行相应修改。因此,我们将采用方案一来进行试验- greatsql> SET use_secondary_engine = ON;
- greatsql> secondary_engine_cost_threshold = 0;
- # 查看下执行计划
- greatsql> explain select c.id, c.dept_id, c.user_id, c.type, c.source, c.charge_no, c.amount, c.from_bank, c.to_bank, c.receipt,c.status, c.remark, c.create_by, c.create_time, c.update_by, c.update_time,c.reason,c.fr_no , d.dept_name, dt.company_name, cp.company_name from charge c left join dept d on c.dept_id = d.dept_id left join user u on c.user_id = u.user_id left join dept_tax dt on c.dept_id = dt.dept_id left join dept_info di on c.dept_id = di.dept_id left join company_bank cb on di.sign_cbid = cb.id left join company cp on cb.company_id = cp.company_id limit 3313445,10\G
- *************************** 1. row ***************************
- id: 1
- select_type: SIMPLE
- table: c
- partitions: NULL
- type: ALL
- possible_keys: NULL
- key: NULL
- key_len: NULL
- ref: NULL
- rows: 905486
- filtered: 100.00
- Extra: Using secondary engine RAPID # 证明用到RAPID引擎
- # 下方省略,证明有用到RAPID引擎即可
复制代码 可以看到默认的使用了RAPID引擎
数据导入
在上方我们执行过ALTER TABLE xxx SECONDARY_LOAD这个操作,会将InnoDB主引擎中的数据全量加载到Rapid引擎中,这个过程称为全量导入。全量导入成功后,Rapid引擎中的数据是静态的,当向主引擎表中继续插入、删除、修改数据时,并不会导入到Rapid引擎中。
那数据会更新会修改要怎么办呢?总不能每次都全量导入吧?
所以此时可以利用binlog特性,可以在全量导入成功后,启动增量导入任务。增量任务会读取自全量导入成功之后的binlog数据,将binlog解析并应用到rapid引擎中,这个过程称为增量导入。
不同于全量导入,增量导入会启动一个常驻的后台线程,实时读取和应用增量binlog数据。
增量导入数据的限制和需求
在手册上有介绍到增量导入数据的限制和需求,如下:
- 需要设置表名大小写不敏感,即设置 lower_case_table_names = 1。
- 需要开启GTID模式,即设置 gtid_mode = ON 和 enforce_gtid_consistency = ON。
- 需要采用row格式的binlog event,不支持statement格式,即设置 binlog_format = ROW。增量任务运行过程中,检测到statement的DML event,可能会报错退出。
- 需要关闭GIPKs特性,即设置 sql_generate_invisible_primary_key = OFF。用户表不能有 invisible primary key,如果表包含隐式不可见的主键,在全量导入过程中会报错;同时也不支持用户表中存在任何不可见列(invisible column)。
- 需要先对表执行过一次全量导入后,才能启动增量导入任务,否则任务启动会报错。
- 不支持 PARTIAL_UPDATE_ROWS_EVENT 类型的binlog,即不要设置 binlog_row_value_options = PARTIAL_JSON。
- 不支持 CREATE TABLE SELECT 语句,增量任务运行过程中,检测到该语句产生的binlog event时可能会报错退出。
- 不支持XA事务,运行过程中检查到XA事务会报错退出。
开启增量导入
增量导入有两个系统函数分别是
- START_SECONDARY_ENGINE_INCREMENT_LOAD_TASK() :启动任务
- STOP_SECONDARY_ENGINE_INCREMENT_LOAD_TASK():停止任务
执行SQL命令 SELECT START_SECONDARY_ENGINE_INCREMENT_LOAD_TASK() 即可启动增量任务,根据函数返回信息可以确认是否任务启动成功。如果启动失败,可以从错误日志中查看具体失败的原因。
该函数包含3个参数:
- db_name,必选项,指定增量导入任务对应的数据库名。
- table_name,必选项,指定增量导入任务对应的数据表名。
- gtid,可选项,指定开始增量导入任务的起始gtid_set值。默认不需要指定,任务会自动根据ALTER TABLE ... SECONDARY_LOAD 全量导入时刻的 gtid_executed 进行计算和判断。
- -- 对user表启动增量导入任务
- greatsql> SELECT START_SECONDARY_ENGINE_INCREMENT_LOAD_TASK('aptest', 'user');
- +------------------------------------------------------------------+
- | START_SECONDARY_ENGINE_INCREMENT_LOAD_TASK('aptest', 'user') |
- +------------------------------------------------------------------+
- | success |
- +------------------------------------------------------------------+
- 1 row in set (0.00 sec)
- -- 查看增量导入任务状态
- greatsql> SELECT * FROM information_schema.SECONDARY_ENGINE_INCREMENT_LOAD_TASK\G
- *************************** 1. row ***************************
- DB_NAME: aptest
- TABLE_NAME: user
- START_TIME: 2024-02-21 09:33:55
- START_GTID: 9548406d-8ff1-11ee-97ec-ec5c6826bca3:1-3808
- COMMITTED_GTID_SET: 9548406d-8ff1-11ee-97ec-ec5c6826bca3:1-3821
- READ_GTID: 9548406d-8ff1-11ee-97ec-ec5c6826bca3:3821
- READ_BINLOG_FILE: ./binlog.000023
- READ_BINLOG_POS: 596312770
- DELAY: 0
- STATUS: RUNNING
- END_TIME:
- INFO:
- 1 row in set (0.00 sec)
复制代码 当然如果想停止也可以使用以下操作停止增量同步- greatsql> SELECT STOP_SECONDARY_ENGINE_INCREMENT_LOAD_TASK('aptest', 'user');
- greatsql> SELECT STOP_SECONDARY_ENGINE_INCREMENT_LOAD_TASK('aptest', 'user');
- +-----------------------------------------------------------------+
- | STOP_SECONDARY_ENGINE_INCREMENT_LOAD_TASK('aptest', 'user') |
- +-----------------------------------------------------------------+
- | success |
- +-----------------------------------------------------------------+
- 1 row in set (0.21 sec)
- greatsql> SELECT * FROM information_schema.SECONDARY_ENGINE_INCREMENT_LOAD_TASK\G
- *************************** 1. row ***************************
- DB_NAME: aptest
- TABLE_NAME: user
- START_TIME: 2024-02-21 09:33:55
- START_GTID: 9548406d-8ff1-11ee-97ec-ec5c6826bca3:1-3808
- COMMITTED_GTID_SET: 9548406d-8ff1-11ee-97ec-ec5c6826bca3:1-3821
- READ_GTID: 9548406d-8ff1-11ee-97ec-ec5c6826bca3:3821
- READ_BINLOG_FILE: ./binlog.000023
- READ_BINLOG_POS: 596312770
- DELAY: 60
- STATUS: NOT RUNNING
- END_TIME: 2024-02-21 09:35:46
- INFO: NORMAL EXIT
- 1 row in set (0.00 sec)
复制代码 更多Rapid存储引擎介绍请前往GreatSQL用户手册上查看 Rapid引擎(Rapid Engine)https://greatsql.cn/docs/8032-25/user-manual/5-enhance/5-1-highperf-rapid-engine.html
总结
对于在不改造SQL的前提下,查询速度提升了 26.9倍 的这一结果,潲同学表示非常惊讶。然而,令人遗憾的是,他们尚未迁移到GreatSQL数据库。因此,他目前正紧锣密鼓地向总监提议,争取尽快完成迁移并采用GreatSQL数据库:)
目前Rapid存储引擎已经开放测试了,欢迎各位来体验测试~
GreatSQL手册:https://greatsql.cn/docs/8032-25/
GreatSQL下载地址:https://gitee.com/GreatSQL/GreatSQL/releases/tag/GreatSQL-8.0.32-25
Enjoy GreatSQL
来源:https://www.cnblogs.com/greatsql/p/18028715
免责声明:由于采集信息均来自互联网,如果侵犯了您的权益,请联系我们【E-Mail:cb@itdo.tech】 我们会及时删除侵权内容,谢谢合作! |
本帖子中包含更多资源
您需要 登录 才可以下载或查看,没有账号?立即注册
x
|