|
本章将和大家分享 Elasticsearch 中的数据聚合功能,通过聚合(aggregations)可以实现对文档数据的统计、分析、运算。
一、数据聚合-聚合的分类
聚合(aggregations)可以实现对文档数据的统计、分析、运算。聚合的官方文档地址:https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations.html
聚合常见的有三类:
1)桶(Bucket)聚合:用来对文档做分组
- TermAggregation:按照文档字段值分组
- Date Histogram:按照日期阶梯分组,例如:一周为一组,或者一月为一组。
2)度量(Metric)聚合:用于计算一些值,比如:最大值、最小值、平均值等。
- Avg:求平均值
- Max:求最大值
- Min:求最小值
- Stats:同时求max、min、avg、sum等。
3)管道(Pipeline)聚合:以其它聚合的结果为基础做聚合。
总结:
1)什么是聚合?
2)聚合的常见种类有哪些?
- Bucket:对文档数据分组,并统计每组数量
- Metric:对文档数据做计算,例如:avg
- Pipeline:基于其它聚合结果再做聚合
3)参与聚合的字段类型不能是 text(可分词的文本)类型,可以是:keyword、数值、日期、布尔类型。
二、数据聚合-DSL实现Bucket聚合
1、DSL实现Bucket聚合
现在,我们要统计所有数据中的酒店品牌有几种,此时可以根据酒店品牌的名称做聚合。
类型为term类型,DSL示例:- # 聚合功能
- GET /hotel/_search
- {
- "size": 0, //设置size为0,结果中不包含文档,只包含聚合结果
- "aggs": { //定义聚合
- "brandAgg": { //给聚合起个名字
- "terms": { //聚合的类型,按照品牌值聚合,所以选择term
- "field": "brand", //参与聚合的字段
- "size": 10 //希望获取的聚合结果数量
- }
- }
- }
- }
复制代码 运行结果如下:
- {
- "took" : 1,
- "timed_out" : false,
- "_shards" : {
- "total" : 1,
- "successful" : 1,
- "skipped" : 0,
- "failed" : 0
- },
- "hits" : {
- "total" : {
- "value" : 201,
- "relation" : "eq"
- },
- "max_score" : null,
- "hits" : [ ]
- },
- "aggregations" : {
- "brandAgg" : {
- "doc_count_error_upper_bound" : 0,
- "sum_other_doc_count" : 39,
- "buckets" : [
- {
- "key" : "7天酒店",
- "doc_count" : 30
- },
- {
- "key" : "如家",
- "doc_count" : 30
- },
- {
- "key" : "皇冠假日",
- "doc_count" : 17
- },
- {
- "key" : "速8",
- "doc_count" : 15
- },
- {
- "key" : "万怡",
- "doc_count" : 13
- },
- {
- "key" : "华美达",
- "doc_count" : 13
- },
- {
- "key" : "和颐",
- "doc_count" : 12
- },
- {
- "key" : "万豪",
- "doc_count" : 11
- },
- {
- "key" : "喜来登",
- "doc_count" : 11
- },
- {
- "key" : "希尔顿",
- "doc_count" : 10
- }
- ]
- }
- }
- }
复制代码 2、Bucket聚合-聚合结果排序
默认情况下,Bucket聚合会统计Bucket内的文档数量,记为_count,并且按照_count降序排序。
我们可以修改结果排序方式:- # 聚合功能,自定义排序规则
- GET /hotel/_search
- {
- "size": 0,
- "aggs": {
- "brandAgg": {
- "terms": {
- "field": "brand",
- "size": 10,
- "order": {
- "_count": "asc" //按照_count升序排列
- }
- }
- }
- }
- }
复制代码 运行结果如下:- {
- "took" : 0,
- "timed_out" : false,
- "_shards" : {
- "total" : 1,
- "successful" : 1,
- "skipped" : 0,
- "failed" : 0
- },
- "hits" : {
- "total" : {
- "value" : 201,
- "relation" : "eq"
- },
- "max_score" : null,
- "hits" : [ ]
- },
- "aggregations" : {
- "brandAgg" : {
- "doc_count_error_upper_bound" : 0,
- "sum_other_doc_count" : 130,
- "buckets" : [
- {
- "key" : "万丽",
- "doc_count" : 2
- },
- {
- "key" : "丽笙",
- "doc_count" : 2
- },
- {
- "key" : "君悦",
- "doc_count" : 4
- },
- {
- "key" : "豪生",
- "doc_count" : 6
- },
- {
- "key" : "维也纳",
- "doc_count" : 7
- },
- {
- "key" : "凯悦",
- "doc_count" : 8
- },
- {
- "key" : "希尔顿",
- "doc_count" : 10
- },
- {
- "key" : "汉庭",
- "doc_count" : 10
- },
- {
- "key" : "万豪",
- "doc_count" : 11
- },
- {
- "key" : "喜来登",
- "doc_count" : 11
- }
- ]
- }
- }
- }
复制代码 3、Bucket聚合-限定聚合范围
默认情况下,Bucket聚合是对索引库的所有文档做聚合,我们可以限定要聚合的文档范围,只要添加query条件即可。
示例:- # 聚合功能,限定聚合范围
- GET /hotel/_search
- {
- "query": {
- "range": {
- "price": {
- "lte": 200 //只对200元以下的文档聚合
- }
- }
- },
- "size": 0,
- "aggs": {
- "brandAgg": {
- "terms": {
- "field": "brand",
- "size": 10,
- "order": {
- "_count": "asc"
- }
- }
- }
- }
- }
复制代码 运行结果如下:- {
- "took" : 0,
- "timed_out" : false,
- "_shards" : {
- "total" : 1,
- "successful" : 1,
- "skipped" : 0,
- "failed" : 0
- },
- "hits" : {
- "total" : {
- "value" : 17,
- "relation" : "eq"
- },
- "max_score" : null,
- "hits" : [ ]
- },
- "aggregations" : {
- "brandAgg" : {
- "doc_count_error_upper_bound" : 0,
- "sum_other_doc_count" : 0,
- "buckets" : [
- {
- "key" : "7天酒店",
- "doc_count" : 1
- },
- {
- "key" : "汉庭",
- "doc_count" : 1
- },
- {
- "key" : "速8",
- "doc_count" : 2
- },
- {
- "key" : "如家",
- "doc_count" : 13
- }
- ]
- }
- }
- }
复制代码 4、总结
1)aggs代表聚合,与query同级,此时query的作用是?
2)聚合必须的三要素是什么?
3)聚合可配置属性有哪些?
- size:指定聚合结果数量
- order:指定聚合结果排序方式
- field:指定聚合字段
三、数据聚合-DSL实现Metric聚合
例如:我们要求获取每个品牌的用户评分的min、max、avg等值。
我们可以利用stats聚合:- # 嵌套聚合Metric
- GET /hotel/_search
- {
- "size": 0,
- "aggs": {
- "brandAgg": {
- "terms": {
- "field": "brand",
- "size": 10,
- "order": {
- "scoreAgg.avg": "desc" //对桶里面的数据做排序
- }
- },
- "aggs": { //是brandAgg聚合的子聚合,也就是分组后对每组分别计算
- "scoreAgg": { //聚合名称
- "stats": { //聚合类型,这里stats可以计算min、max、avg等
- "field": "score" //聚合字段,这里是score
- }
- }
- }
- }
- }
- }
复制代码 运行结果如下所示:
- {
- "took" : 0,
- "timed_out" : false,
- "_shards" : {
- "total" : 1,
- "successful" : 1,
- "skipped" : 0,
- "failed" : 0
- },
- "hits" : {
- "total" : {
- "value" : 201,
- "relation" : "eq"
- },
- "max_score" : null,
- "hits" : [ ]
- },
- "aggregations" : {
- "brandAgg" : {
- "doc_count_error_upper_bound" : 0,
- "sum_other_doc_count" : 111,
- "buckets" : [
- {
- "key" : "万丽",
- "doc_count" : 2,
- "scoreAgg" : {
- "count" : 2,
- "min" : 46.0,
- "max" : 47.0,
- "avg" : 46.5,
- "sum" : 93.0
- }
- },
- {
- "key" : "凯悦",
- "doc_count" : 8,
- "scoreAgg" : {
- "count" : 8,
- "min" : 45.0,
- "max" : 47.0,
- "avg" : 46.25,
- "sum" : 370.0
- }
- },
- {
- "key" : "和颐",
- "doc_count" : 12,
- "scoreAgg" : {
- "count" : 12,
- "min" : 44.0,
- "max" : 47.0,
- "avg" : 46.083333333333336,
- "sum" : 553.0
- }
- },
- {
- "key" : "丽笙",
- "doc_count" : 2,
- "scoreAgg" : {
- "count" : 2,
- "min" : 46.0,
- "max" : 46.0,
- "avg" : 46.0,
- "sum" : 92.0
- }
- },
- {
- "key" : "喜来登",
- "doc_count" : 11,
- "scoreAgg" : {
- "count" : 11,
- "min" : 44.0,
- "max" : 48.0,
- "avg" : 46.0,
- "sum" : 506.0
- }
- },
- {
- "key" : "皇冠假日",
- "doc_count" : 17,
- "scoreAgg" : {
- "count" : 17,
- "min" : 44.0,
- "max" : 48.0,
- "avg" : 46.0,
- "sum" : 782.0
- }
- },
- {
- "key" : "万豪",
- "doc_count" : 11,
- "scoreAgg" : {
- "count" : 11,
- "min" : 43.0,
- "max" : 47.0,
- "avg" : 45.81818181818182,
- "sum" : 504.0
- }
- },
- {
- "key" : "万怡",
- "doc_count" : 13,
- "scoreAgg" : {
- "count" : 13,
- "min" : 44.0,
- "max" : 48.0,
- "avg" : 45.69230769230769,
- "sum" : 594.0
- }
- },
- {
- "key" : "君悦",
- "doc_count" : 4,
- "scoreAgg" : {
- "count" : 4,
- "min" : 44.0,
- "max" : 47.0,
- "avg" : 45.5,
- "sum" : 182.0
- }
- },
- {
- "key" : "希尔顿",
- "doc_count" : 10,
- "scoreAgg" : {
- "count" : 10,
- "min" : 37.0,
- "max" : 48.0,
- "avg" : 45.4,
- "sum" : 454.0
- }
- }
- ]
- }
- }
- }
复制代码 四、数据聚合-多条件聚合
需求:搜索页面中的城市、星级、品牌等信息不应该是在页面写死,而是通过聚合索引库中的酒店数据得来的。
示例:- # 多条件聚合
- GET /hotel/_search
- {
- "query": {
- "bool": {
- "must": [
- {
- "match": {
- "all": "酒店"
- }
- }
- ],
- "should": [
- {
- "term": {
- "brand": "皇冠假日"
- }
- },
- {
- "term": {
- "brand": "华美达"
- }
- }
- ],
- "must_not": [
- {
- "range": {
- "price": {
- "lte": 500
- }
- }
- }
- ],
- "filter": [
- {
- "range": {
- "score": {
- "gte": 45
- }
- }
- }
- ],
- "minimum_should_match": 1,
- "boost": 1
- }
- },
- "size": 0,
- "aggs": {
- "cityAgg": {
- "terms": {
- "field": "city",
- "size": 10,
- "order": {
- "_count": "desc"
- }
- }
- },
- "starNameAgg": {
- "terms": {
- "field": "starName",
- "size": 10,
- "order": {
- "_count": "desc"
- }
- }
- },
- "brandAgg": {
- "terms": {
- "field": "brand",
- "size": 10,
- "order": {
- "scoreAgg.avg": "desc"
- }
- },
- "aggs": {
- "scoreAgg": {
- "stats": {
- "field": "score"
- }
- }
- }
- }
- }
- }
复制代码 运行结果如下:- {
- "took" : 1,
- "timed_out" : false,
- "_shards" : {
- "total" : 1,
- "successful" : 1,
- "skipped" : 0,
- "failed" : 0
- },
- "hits" : {
- "total" : {
- "value" : 17,
- "relation" : "eq"
- },
- "max_score" : null,
- "hits" : [ ]
- },
- "aggregations" : {
- "brandAgg" : {
- "doc_count_error_upper_bound" : 0,
- "sum_other_doc_count" : 0,
- "buckets" : [
- {
- "key" : "皇冠假日",
- "doc_count" : 12,
- "scoreAgg" : {
- "count" : 12,
- "min" : 45.0,
- "max" : 48.0,
- "avg" : 46.416666666666664,
- "sum" : 557.0
- }
- },
- {
- "key" : "华美达",
- "doc_count" : 5,
- "scoreAgg" : {
- "count" : 5,
- "min" : 45.0,
- "max" : 46.0,
- "avg" : 45.2,
- "sum" : 226.0
- }
- }
- ]
- },
- "starNameAgg" : {
- "doc_count_error_upper_bound" : 0,
- "sum_other_doc_count" : 0,
- "buckets" : [
- {
- "key" : "五钻",
- "doc_count" : 7
- },
- {
- "key" : "五星级",
- "doc_count" : 5
- },
- {
- "key" : "四星级",
- "doc_count" : 3
- },
- {
- "key" : "四钻",
- "doc_count" : 2
- }
- ]
- },
- "cityAgg" : {
- "doc_count_error_upper_bound" : 0,
- "sum_other_doc_count" : 0,
- "buckets" : [
- {
- "key" : "上海",
- "doc_count" : 10
- },
- {
- "key" : "北京",
- "doc_count" : 4
- },
- {
- "key" : "深圳",
- "doc_count" : 3
- }
- ]
- }
- }
- }
复制代码 至此本文就全部介绍完了,如果觉得对您有所启发请记得点个赞哦!!!
此文由博主精心撰写转载请保留此原文链接:https://www.cnblogs.com/xyh9039/p/18093166
版权声明:如有雷同纯属巧合,如有侵权请及时联系本人修改,谢谢!!!
来源:https://www.cnblogs.com/xyh9039/p/18093166
免责声明:由于采集信息均来自互联网,如果侵犯了您的权益,请联系我们【E-Mail:cb@itdo.tech】 我们会及时删除侵权内容,谢谢合作! |
本帖子中包含更多资源
您需要 登录 才可以下载或查看,没有账号?立即注册
x
|