翼度科技»论坛 编程开发 python 查看内容

Python中2种常用数据可视化库:Bokeh和Altair

8

主题

8

帖子

24

积分

新手上路

Rank: 1

积分
24
本文分享自华为云社区《探究数据可视化:Bokeh vs. Altair》,作者:柠檬味拥抱。
在数据科学和数据分析领域,数据可视化是一种强大的工具,可以帮助我们更好地理解数据、发现模式和趋势。Python作为一种流行的数据科学工具,拥有多种数据可视化库。本文将重点比较Bokeh和Altair这两个常用的Python数据可视化库,探讨它们的优缺点以及在不同场景下的适用性。
Bokeh 简介

Bokeh是一个交互式可视化库,它能够创建各种类型的交互式图表,包括散点图、线图、条形图等。Bokeh提供了丰富的工具,使用户能够在图表中进行缩放、平移和选择等操作。
Altair 简介

Altair是一个基于Vega和Vega-Lite的声明式统计可视化库。它的设计理念是简单性和一致性,使用者只需通过简单的Python语法即可创建复杂的可视化图表,而无需深入了解底层的绘图细节。
Bokeh 与 Altair 的比较

易用性:

  • Bokeh:相对而言,Bokeh的学习曲线较为陡峭,需要一定的时间来掌握其强大的交互功能和绘图选项。
  • Altair:Altair的语法相对简单直观,使用者可以更快速地创建出漂亮的图表,对于新手来说更易上手。
交互性:

  • Bokeh:Bokeh提供了丰富的交互工具,可以轻松地创建交互式图表,并且支持自定义交互行为。
  • Altair:虽然Altair的交互功能相对较少,但是它可以无缝地与其他交互库(如Panel)集成,实现更复杂的交互需求。
可视化表达能力:

  • Bokeh:Bokeh可以创建各种类型的图表,并且支持自定义图表的外观和布局。
  • Altair:Altair的语法设计简洁而灵活,可以轻松地实现复杂的可视化表达,例如使用facet进行分面绘图、使用layer进行图层叠加等。
示例代码和解析

Bokeh 示例:
  1. from bokeh.plotting import figure, show
  2. from bokeh.sampledata.iris import flowers
  3. # 创建一个散点图
  4. p = figure(title="Iris Dataset", x_axis_label='Petal Length', y_axis_label='Petal Width')
  5. # 添加散点数据
  6. p.circle(flowers['petal_length'], flowers['petal_width'], legend_label='Iris Flowers', color='blue', size=8)
  7. # 显示图表
  8. show(p)
复制代码
解析:

  • 使用Bokeh创建一个散点图,x轴为花瓣长度,y轴为花瓣宽度。
  • 使用Bokeh的circle方法添加散点数据,并指定图例标签、颜色和大小。
  • 最后调用show函数显示图表。
Altair 示例:
  1. import altair as alt
  2. from vega_datasets import data
  3. # 加载数据集
  4. iris = data.iris()
  5. # 创建散点图
  6. scatter = alt.Chart(iris).mark_circle().encode(
  7.     x='petalLength:Q',
  8.     y='petalWidth:Q',
  9.     color='species:N',
  10.     tooltip=['species', 'petalLength', 'petalWidth']
  11. ).properties(
  12.     title='Iris Dataset',
  13.     width=400,
  14.     height=300
  15. ).interactive()
  16. # 显示图表
  17. scatter
复制代码
解析:

  • 使用Altair创建一个散点图,x轴为花瓣长度,y轴为花瓣宽度,颜色根据鸢尾花的种类进行编码。
  • 使用Altair的mark_circle方法创建散点图,并指定x、y、color等属性。
  • 最后通过.properties方法设置图表标题、宽度和高度,并调用.interactive()方法使图表具有交互功能。
通过以上示例和比较,我们可以看出,Bokeh和Altair都是功能强大的Python可视化库,它们各有优劣,选择合适的库取决于具体的需求和个人偏好。Bokeh适用于需要复杂交互的场景,而Altair则更适合于快速创建漂亮的可视化图表。
案例与代码示例

1. Bokeh 案例:

假设我们有一组销售数据,包括产品名称、销售量和销售额,我们想要使用 Bokeh 创建一个交互式条形图来展示各产品的销售情况。
  1. from bokeh.plotting import figure, output_file, show
  2. from bokeh.models import ColumnDataSource, HoverTool
  3. from bokeh.transform import factor_cmap
  4. import pandas as pd
  5. # 创建示例销售数据
  6. sales_data = {
  7.     'Product': ['Product A', 'Product B', 'Product C', 'Product D'],
  8.     'Sales Volume': [100, 150, 200, 120],
  9.     'Revenue': [5000, 7500, 10000, 6000]
  10. }
  11. df = pd.DataFrame(sales_data)
  12. # 设置输出文件
  13. output_file("sales_bar_chart.html")
  14. # 创建ColumnDataSource
  15. source = ColumnDataSource(df)
  16. # 创建绘图对象
  17. p = figure(x_range=df['Product'], plot_height=350, title="Sales Summary",
  18.            toolbar_location=None, tools="")
  19. # 添加条形图
  20. p.vbar(x='Product', top='Sales Volume', width=0.9, source=source,
  21.        line_color='white', fill_color=factor_cmap('Product', palette='Set1', factors=df['Product']))
  22. # 添加悬停工具
  23. p.add_tools(HoverTool(tooltips=[("Product", "@Product"), ("Sales Volume", "@{Sales Volume}"), ("Revenue", "@Revenue")]))
  24. # 设置图表属性
  25. p.xgrid.grid_line_color = None
  26. p.y_range.start = 0
  27. p.yaxis.axis_label = "Sales Volume"
  28. # 显示图表
  29. show(p)
复制代码
这段代码是用于创建一个简单的条形图来展示销售数据,并使用 Bokeh 库进行可视化。以下是代码的主要步骤解析:
导入必要的库:

  • from bokeh.plotting import figure, output_file, show: 从 Bokeh 库中导入创建绘图、输出文件和显示图表的函数。
  • from bokeh.models import ColumnDataSource, HoverTool: 从 Bokeh 库中导入用于处理数据源和悬停工具的相关类。
  • from bokeh.transform import factor_cmap: 从 Bokeh 库中导入用于颜色映射的转换函数。
  • import pandas as pd: 导入 Pandas 库,用于处理数据。
创建示例销售数据:使用字典形式创建了示例的销售数据,包括产品名称、销售量和收入。
将数据转换为 Pandas DataFrame:
使用 pd.DataFrame() 函数将销售数据转换为 DataFrame。
设置输出文件:
使用 output_file() 函数设置输出文件名为 “sales_bar_chart.html”。
创建 ColumnDataSource:
使用 ColumnDataSource 类将 DataFrame 转换为 Bokeh 可用的数据源。
创建绘图对象:
使用 figure() 函数创建一个条形图对象 p,指定了 x 轴的范围、绘图高度、标题等属性。
添加条形图:
使用 vbar() 方法向绘图对象添加条形图,指定了 x 值(产品名称)、条形的高度(销售量)、线条颜色、填充颜色等属性。
添加悬停工具:
使用 add_tools() 方法向绘图对象添加悬停工具,指定了悬停时显示的信息,包括产品名称、销售量和收入。
设置图表属性:
使用一系列属性设置函数设置图表的外观属性,如去除 x 轴的网格线、设置 y 轴起始值、设置 y 轴标签等。
显示图表:
使用 show() 函数显示绘图对象。
通过这些步骤,代码创建了一个包含销售数据的条形图,并通过悬停工具提供了额外的交互信息。
2. Altair 案例:

假设我们有一组学生的成绩数据,包括学生姓名、数学成绩和英语成绩,我们想要使用 Altair 创建一个散点图来展示学生的数学成绩与英语成绩的关系。
  1. import altair as alt
  2. import pandas as pd
  3. # 创建示例成绩数据
  4. score_data = {
  5.     'Student': ['Alice', 'Bob', 'Charlie', 'David', 'Emma'],
  6.     'Math Score': [85, 90, 75, 80, 95],
  7.     'English Score': [75, 85, 80, 70, 90]
  8. }
  9. df = pd.DataFrame(score_data)
  10. # 创建散点图
  11. scatter_plot = alt.Chart(df).mark_point().encode(
  12.     x='Math Score',
  13.     y='English Score',
  14.     tooltip=['Student', 'Math Score', 'English Score']
  15. ).properties(
  16.     title='Math vs English Scores',
  17.     width=400,
  18.     height=300
  19. ).interactive()
  20. # 显示图表
  21. scatter_plot
复制代码
这些示例代码展示了如何使用 Bokeh 和 Altair 分别创建交互式条形图和散点图,以展示销售数据和成绩数据的可视化。通过这些示例,可以更好地理解 Bokeh 和 Altair 在实际应用中的使用方法和效果。
3. Bokeh 案例(交互式地图):

假设我们有一组城市的经纬度数据,以及每个城市的人口数量,我们希望使用 Bokeh 创建一个交互式地图,显示每个城市的位置并以圆的大小表示人口数量。
  1. from bokeh.plotting import figure, output_file, show
  2. from bokeh.models import ColumnDataSource, HoverTool
  3. # 示例城市数据
  4. cities_data = {
  5.     'City': ['New York', 'Los Angeles', 'Chicago', 'Houston'],
  6.     'Latitude': [40.7128, 34.0522, 41.8781, 29.7604],
  7.     'Longitude': [-74.0060, -118.2437, -87.6298, -95.3698],
  8.     'Population': [8399000, 3990456, 2705994, 2320268]
  9. }
  10. df = pd.DataFrame(cities_data)
  11. # 设置输出文件
  12. output_file("population_map.html")
  13. # 创建ColumnDataSource
  14. source = ColumnDataSource(df)
  15. # 创建绘图对象
  16. p = figure(plot_width=800, plot_height=600, title="Population Map",
  17.            toolbar_location="below")
  18. # 添加圆形标记
  19. p.circle(x='Longitude', y='Latitude', size='Population' / 100000,
  20.          fill_alpha=0.6, line_color=None, source=source)
  21. # 添加悬停工具
  22. hover = HoverTool()
  23. hover.tooltips = [("City", "@City"), ("Population", "@Population")]
  24. p.add_tools(hover)
  25. # 设置图表属性
  26. p.xaxis.axis_label = "Longitude"
  27. p.yaxis.axis_label = "Latitude"
  28. # 显示图表
  29. show(p)
复制代码
4. Altair 案例(堆叠柱状图):

假设我们有一组月度销售数据,包括销售额和利润,我们希望使用 Altair 创建一个堆叠柱状图,展示每个月的销售额和利润情况。
  1. import altair as alt
  2. import pandas as pd
  3. # 示例销售数据
  4. sales_data = {
  5.     'Month': ['Jan', 'Feb', 'Mar', 'Apr', 'May'],
  6.     'Sales': [50000, 60000, 70000, 55000, 65000],
  7.     'Profit': [20000, 25000, 30000, 22000, 27000]
  8. }
  9. df = pd.DataFrame(sales_data)
  10. # 创建堆叠柱状图
  11. stacked_bar_chart = alt.Chart(df).mark_bar().encode(
  12.     x='Month',
  13.     y='Sales',
  14.     color=alt.value('blue'),
  15.     tooltip=['Month', 'Sales']
  16. ).properties(
  17.     title='Monthly Sales and Profit',
  18.     width=400,
  19.     height=300
  20. ).interactive() + \
  21. alt.Chart(df).mark_bar().encode(
  22.     x='Month',
  23.     y='Profit',
  24.     color=alt.value('orange'),
  25.     tooltip=['Month', 'Profit']
  26. )
  27. # 显示图表
  28. stacked_bar_chart
复制代码
这些示例代码展示了如何使用 Bokeh 和 Altair 分别创建交互式地图和堆叠柱状图,以展示城市人口分布和销售数据的可视化。这些示例为使用 Bokeh 和 Altair 进行数据可视化提供了更多的灵感和实践经验。
总结

本文对Python中两个常用的数据可视化库 Bokeh 和 Altair 进行了比较和探讨。通过对它们的特点、优缺点以及使用示例的详细分析,读者可以更好地了解这两个库的功能和适用场景,从而更好地选择合适的库来进行数据可视化工作。
在比较中,我们发现:

  • Bokeh 提供了丰富的交互功能和自定义选项,适用于需要复杂交互和自定义图表外观的场景,但学习曲线较陡。
  • Altair 的语法简洁直观,易于上手,适用于快速创建漂亮的可视化图表,但交互功能相对较少。
针对不同的需求和技能水平,读者可以灵活选择使用 Bokeh 或 Altair 进行数据可视化。Bokeh 适用于需要复杂交互和自定义外观的场景,而 Altair 则更适合快速创建漂亮的可视化图表。
通过本文的介绍和示例代码,读者可以进一步掌握 Bokeh 和 Altair 的使用方法,并在实践中运用它们来进行数据可视化工作。同时,我们也展望了数据可视化领域未来的发展趋势,包括增强交互性、提升性能和效率、整合机器学习和深度学习等方面。
总之,数据可视化作为数据科学和数据分析领域的重要工具,将在未来继续发挥重要作用。Bokeh 和 Altair 等可视化库的不断发展和完善,将为用户提供更加强大和便捷的数据可视化工具,助力数据分析和决策支持工作的开展。
 
点击关注,第一时间了解华为云新鲜技术~
 

来源:https://www.cnblogs.com/huaweiyun/p/18139796
免责声明:由于采集信息均来自互联网,如果侵犯了您的权益,请联系我们【E-Mail:cb@itdo.tech】 我们会及时删除侵权内容,谢谢合作!

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有账号?立即注册

x
来自手机

举报 回复 使用道具