|
- GreatSQL社区原创内容未经授权不得随意使用,转载请联系小编并注明来源。
- GreatSQL是MySQL的国产分支版本,使用上与MySQL一致。
- 作者: 花家舍
- 文章来源:GreatSQL社区原创
前文回顾
译注:cstack在github维护了一个简单的、类似sqlite的数据库实现,通过这个简单的项目,可以很好的理解数据库是如何运行的。本文是第十篇,主要是实现B-tree中叶子节点分裂
Part 10 叶子节点分裂
我们 B-Tree 只有一个节点,这看起来不太像一棵标准的 tree。为了解决这个问题,需要一些代码来实现分裂叶子节点。在那之后,需要创建一个内部节点,使其成为两个新的叶子节点的父节点。
基本上,我们这个系列的文章的目标是从这里开始的:
one-node btree
到这样:
two-level btree
首先中的首先,先把处理节点写满错误移除掉:- void leaf_node_insert(Cursor* cursor, uint32_t key, Row* value) {
- void* node = get_page(cursor->table->pager, cursor->page_num);
- uint32_t num_cells = *leaf_node_num_cells(node);
- if (num_cells >= LEAF_NODE_MAX_CELLS) {
- // Node full
- - printf("Need to implement splitting a leaf node.\n");
- - exit(EXIT_FAILURE);
- + leaf_node_split_and_insert(cursor, key, value);
- + return;
- }
- ExecuteResult execute_insert(Statement* statement, Table* table) {
- void* node = get_page(table->pager, table->root_page_num);
- uint32_t num_cells = (*leaf_node_num_cells(node));
- - if (num_cells >= LEAF_NODE_MAX_CELLS) {
- - return EXECUTE_TABLE_FULL;
- - }
- Row* row_to_insert = &(statement->row_to_insert);
- uint32_t key_to_insert = row_to_insert->id;
复制代码 分裂算法(Splitting Algorithm)
简单的部分结束了。以下是我们需要做的事情的描述(出自:SQLite Database System: Design and Implementation)
原文:If there is no space on the leaf node, we would split the existing entries residing there and the new one (being inserted) into two equal halves: lower and upper halves. (Keys on the upper half are strictly greater than those on the lower half.) We allocate a new leaf node, and move the upper half into the new node.
翻译:如果在叶子节点中已经没有空间,我们需要将驻留在节点中的现有条目和新条目(正在插入)分成相等的两半:低半部分和高半部分(在高半部分中的键要严格大于低半部分中的键)。我们分配一个新的节点,将高半部分的条目移到新的节点中。
现在来处理旧节点并创建一个新的节点:- +void leaf_node_split_and_insert(Cursor* cursor, uint32_t key, Row* value) {
- + /*
- + Create a new node and move half the cells over.
- + Insert the new value in one of the two nodes.
- + Update parent or create a new parent.
- + */
- +
- + void* old_node = get_page(cursor->table->pager, cursor->page_num);
- + uint32_t new_page_num = get_unused_page_num(cursor->table->pager);
- + void* new_node = get_page(cursor->table->pager, new_page_num);
- + initialize_leaf_node(new_node);
复制代码 接下来,拷贝节点中每一个单元格到新的位置:- + /*
- + All existing keys plus new key should be divided
- + evenly between old (left) and new (right) nodes.
- + Starting from the right, move each key to correct position.
- + */
- + for (int32_t i = LEAF_NODE_MAX_CELLS; i >= 0; i--) {
- + void* destination_node;
- + if (i >= LEAF_NODE_LEFT_SPLIT_COUNT) {
- + destination_node = new_node;
- + } else {
- + destination_node = old_node;
- + }
- + uint32_t index_within_node = i % LEAF_NODE_LEFT_SPLIT_COUNT;
- + void* destination = leaf_node_cell(destination_node, index_within_node);
- +
- + if (i == cursor->cell_num) {
- + serialize_row(value, destination);
- + } else if (i > cursor->cell_num) {
- + memcpy(destination, leaf_node_cell(old_node, i - 1), LEAF_NODE_CELL_SIZE);
- + } else {
- + memcpy(destination, leaf_node_cell(old_node, i), LEAF_NODE_CELL_SIZE);
- + }
- + }
复制代码 更新节点中头部标记的单元格的数量(更新node’s header)- + /* Update cell count on both leaf nodes */
- + *(leaf_node_num_cells(old_node)) = LEAF_NODE_LEFT_SPLIT_COUNT;
- + *(leaf_node_num_cells(new_node)) = LEAF_NODE_RIGHT_SPLIT_COUNT;
复制代码 然后我们需要更新节点的父节点。如果原始节点是一个根节点(root node),那么他就没有父节点。这种情况中,创建一个新的根节点来作为它的父节点。这里做另外一个存根(先不具体实现):- + if (is_node_root(old_node)) {
- + return create_new_root(cursor->table, new_page_num);
- + } else {
- + printf("Need to implement updating parent after split\n");
- + exit(EXIT_FAILURE);
- + }
- +}
复制代码 分配新的页面(Allocating New Pages)
让我们回过头来定义一些函数和常量。当我们创建一个新的叶子节点,我们把它放进一个由get_unused_page_num()函数决定(返回)的页中。- +/*
- +Until we start recycling free pages, new pages will always
- +go onto the end of the database file
- +*/
- +uint32_t get_unused_page_num(Pager* pager) { return pager->num_pages; }
复制代码 现在,我们假定在一个数据库中有N个数据页,页编码从 0 到 N-1 的页已经被分配。因此我们总是可以为一个新页分配页 N编码。在我们最终实现删除(数据)操作后,一些页可能会变成空页,并且他们的页编号可能没有被使用。为了更有效率,我们会回收这些空闲页。
叶子节点的大小(Leaf Node Sizes)
为了保持的树的平衡,我们在两个新的节点之间平等的分发单元格。如果一个叶子节点可以hold住 N 个单元格,那么在分裂期间我们需要分发 N + 1 个单元格在两个节点之间(N 个原有的单元格和一个新插入的单元格)。如果 N+1 是奇数,我比较随意地选择了左侧节点获取多的那个单元格。- +const uint32_t LEAF_NODE_RIGHT_SPLIT_COUNT = (LEAF_NODE_MAX_CELLS + 1) / 2;
- +const uint32_t LEAF_NODE_LEFT_SPLIT_COUNT =
- + (LEAF_NODE_MAX_CELLS + 1) - LEAF_NODE_RIGHT_SPLIT_COUNT;
复制代码 创建新根节点(Creating a New Root)
这里是“SQLite Database System”描述的创建一个新根节点的过程:
原文:Let N be the root node. First allocate two nodes, say L and R. Move lower half of N into L and the upper half into R. Now N is empty. Add 〈L, K,R〉 in N, where K is the max key in L. Page N remains the root. Note that the depth of the tree has increased by one, but the new tree remains height balanced without violating any B+-tree property.
翻译:设 N 为根节点。先分配两个节点,比如 L 和 R。移动 N 中低半部分的条目到 L 中,移动高半部分条目到 R 中。现在 N 已经空了。增加 〈L, K,R〉到 N 中,这里 K 是 L 中最大 key 。页 N 仍然是根节点。注意这时树的深度已经增加了一层,但是在没有违反任何 B-Tree 属性的情况下,新的树仍然保持了高度上平衡。
此时,我们已经分配了右子节点并移动高半部分的条目到这个子节点。我们的函数把这个右子节点作为输入,并且分配一个新的页面来存放左子节点。- +void create_new_root(Table* table, uint32_t right_child_page_num) {
- + /*
- + Handle splitting the root.
- + Old root copied to new page, becomes left child.
- + Address of right child passed in.
- + Re-initialize root page to contain the new root node.
- + New root node points to two children.
- + */
- +
- + void* root = get_page(table->pager, table->root_page_num);
- + void* right_child = get_page(table->pager, right_child_page_num);
- + uint32_t left_child_page_num = get_unused_page_num(table->pager);
- + void* left_child = get_page(table->pager, left_child_page_num);
复制代码 旧的根节点已经被拷贝到左子节点,所以我们可以重用根节点(无需重新分配):- + /* Left child has data copied from old root */
- + memcpy(left_child, root, PAGE_SIZE);
- + set_node_root(left_child, false);
复制代码 最后我们初始化根节点作为一个新的、有两个子节点的内部节点。- + /* Root node is a new internal node with one key and two children */
- + initialize_internal_node(root);
- + set_node_root(root, true);
- + *internal_node_num_keys(root) = 1;
- + *internal_node_child(root, 0) = left_child_page_num;
- + uint32_t left_child_max_key = get_node_max_key(left_child);
- + *internal_node_key(root, 0) = left_child_max_key;
- + *internal_node_right_child(root) = right_child_page_num;
- +}
复制代码 内部节点格式(Internal Node Format)
现在我们终于创建了内部节点,我们就不得不定义它的布局了。它从通用 header 开始,然后是它包含的 key 的数量,接下来是它右边子节点的页号。内部节点的子节点指针始终比它的 key 的数量多一个。这个 子节点指针存储在 header 中。- +/*
- + * Internal Node Header Layout
- + */
- +const uint32_t INTERNAL_NODE_NUM_KEYS_SIZE = sizeof(uint32_t);
- +const uint32_t INTERNAL_NODE_NUM_KEYS_OFFSET = COMMON_NODE_HEADER_SIZE;
- +const uint32_t INTERNAL_NODE_RIGHT_CHILD_SIZE = sizeof(uint32_t);
- +const uint32_t INTERNAL_NODE_RIGHT_CHILD_OFFSET =
- + INTERNAL_NODE_NUM_KEYS_OFFSET + INTERNAL_NODE_NUM_KEYS_SIZE;
- +const uint32_t INTERNAL_NODE_HEADER_SIZE = COMMON_NODE_HEADER_SIZE +
- + INTERNAL_NODE_NUM_KEYS_SIZE +
- + INTERNAL_NODE_RIGHT_CHILD_SIZE;
复制代码 内部节点的 body 是一个单元格的数组,每个单元格包含一个子指针和一个 key 。每个 key 都必须是它的左边子节点中包含的最大 key 。- +/*
- + * Internal Node Body Layout
- + */
- +const uint32_t INTERNAL_NODE_KEY_SIZE = sizeof(uint32_t);
- +const uint32_t INTERNAL_NODE_CHILD_SIZE = sizeof(uint32_t);
- +const uint32_t INTERNAL_NODE_CELL_SIZE =
- + INTERNAL_NODE_CHILD_SIZE + INTERNAL_NODE_KEY_SIZE;
复制代码 基于这些常量,下边是内部节点布局看上去的样子:
Our internal node format
注意我们巨大的分支因子(也就是扇出)。因为每个子节点指针/键对儿(child pointer / key pair)太小了,我们可以在每个内部节点中容纳 510 个键和 511 个子指针(也就是每个内部节点可以有510个子节点)。这意味着我们从来不用在查找 key 时遍历树的很多层。
# internal node layersmax # leaf nodesSize of all leaf nodes0511^0 = 14 KB1511^1 = 512~2 MB2511^2 = 261,121~1 GB3511^3 = 133,432,831~550 GB实际上,我们不能在每个叶子节点中存储满 4KB 的数据,这是因为存储 header 、 keys 的开销和空间的浪费。 但是我们可以通过从磁盘上加载 4 个 pages (树高四层,每层只需检索一页)来检索大约 500G 的数据。这就是为什么 B-Tree 对数据库来说是很有用的数据结构。
下边是读取和写入一个内部节点的方法:- +uint32_t* internal_node_num_keys(void* node) {
- + return node + INTERNAL_NODE_NUM_KEYS_OFFSET;
- +}
- +
- +uint32_t* internal_node_right_child(void* node) {
- + return node + INTERNAL_NODE_RIGHT_CHILD_OFFSET;
- +}
- +
- +uint32_t* internal_node_cell(void* node, uint32_t cell_num) {
- + return node + INTERNAL_NODE_HEADER_SIZE + cell_num * INTERNAL_NODE_CELL_SIZE;
- +}
- +
- +uint32_t* internal_node_child(void* node, uint32_t child_num) {
- + uint32_t num_keys = *internal_node_num_keys(node);
- + if (child_num > num_keys) {
- + printf("Tried to access child_num %d > num_keys %d\n", child_num, num_keys);
- + exit(EXIT_FAILURE);
- + } else if (child_num == num_keys) {
- + return internal_node_right_child(node);
- + } else {
- + return internal_node_cell(node, child_num);
- + }
- +}
- +
- +uint32_t* internal_node_key(void* node, uint32_t key_num) {
- + return internal_node_cell(node, key_num) + INTERNAL_NODE_CHILD_SIZE;
- +}
复制代码 对于一个内部节点,最大 key 始终是其右键。对于一个叶子节点,最大 key 就是最大索引键。- +uint32_t get_node_max_key(void* node) {
- + switch (get_node_type(node)) {
- + case NODE_INTERNAL:
- + return *internal_node_key(node, *internal_node_num_keys(node) - 1);
- + case NODE_LEAF:
- + return *leaf_node_key(node, *leaf_node_num_cells(node) - 1);
- + }
- +}
复制代码 追踪根节点(Keeping Track of the Root)
我们终于在通用的节点 header 中使用了 is_root 字段。回调它是我们用它来决定怎样来分裂一个叶子节点:- if (is_node_root(old_node)) {
- return create_new_root(cursor->table, new_page_num);
- } else {
- printf("Need to implement updating parent after split\n");
- exit(EXIT_FAILURE);
- }
- }
复制代码 下面是 getter & setter:- +bool is_node_root(void* node) {
- + uint8_t value = *((uint8_t*)(node + IS_ROOT_OFFSET));
- + return (bool)value;
- +}
- +
- +void set_node_root(void* node, bool is_root) {
- + uint8_t value = is_root;
- + *((uint8_t*)(node + IS_ROOT_OFFSET)) = value;
- +}
复制代码 初始化这两种类型的节点(内部节点&叶子节点)应默认设置 is_root 为 false。- void initialize_leaf_node(void* node) {
- set_node_type(node, NODE_LEAF);
- + set_node_root(node, false);
- *leaf_node_num_cells(node) = 0;
- }
- +void initialize_internal_node(void* node) {
- + set_node_type(node, NODE_INTERNAL);
- + set_node_root(node, false);
- + *internal_node_num_keys(node) = 0;
- +}
复制代码 当创建表的第一个节点时我们需要设置 is_root 为 true 。- // New database file. Initialize page 0 as leaf node.
- void* root_node = get_page(pager, 0);
- initialize_leaf_node(root_node);
- + set_node_root(root_node, true);
- }
- return table;
复制代码 打印树(Printing the Tree)
为了帮助我们可视化数据库的状态,我们应该更新我们的 .btree 元命令以打印多级树。
我要替换当前的 print_leaf_node() 函数:- -void print_leaf_node(void* node) {
- - uint32_t num_cells = *leaf_node_num_cells(node);
- - printf("leaf (size %d)\n", num_cells);
- - for (uint32_t i = 0; i < num_cells; i++) {
- - uint32_t key = *leaf_node_key(node, i);
- - printf(" - %d : %d\n", i, key);
- - }
- -}
复制代码 实现一个递归函数,可以接受任何节点,然后打印它和它的子节点。它接受一个缩进级别作为参数,缩进级别每次在每次递归时会递增。我还在缩进中添加了一个很小的辅助函数。- +void indent(uint32_t level) {
- + for (uint32_t i = 0; i < level; i++) {
- + printf(" ");
- + }
- +}
- +
- +void print_tree(Pager* pager, uint32_t page_num, uint32_t indentation_level) {
- + void* node = get_page(pager, page_num);
- + uint32_t num_keys, child;
- +
- + switch (get_node_type(node)) {
- + case (NODE_LEAF):
- + num_keys = *leaf_node_num_cells(node);
- + indent(indentation_level);
- + printf("- leaf (size %d)\n", num_keys);
- + for (uint32_t i = 0; i < num_keys; i++) {
- + indent(indentation_level + 1);
- + printf("- %d\n", *leaf_node_key(node, i));
- + }
- + break;
- + case (NODE_INTERNAL):
- + num_keys = *internal_node_num_keys(node);
- + indent(indentation_level);
- + printf("- internal (size %d)\n", num_keys);
- + for (uint32_t i = 0; i < num_keys; i++) {
- + child = *internal_node_child(node, i);
- + print_tree(pager, child, indentation_level + 1);
- +
- + indent(indentation_level + 1);
- + printf("- key %d\n", *internal_node_key(node, i));
- + }
- + child = *internal_node_right_child(node);
- + print_tree(pager, child, indentation_level + 1);
- + break;
- + }
- +}
复制代码 并更新对 print 函数的调用,传递缩进级别为零。- } else if (strcmp(input_buffer->buffer, ".btree") == 0) {
- printf("Tree:\n");
- - print_leaf_node(get_page(table->pager, 0));
- + print_tree(table->pager, 0, 0);
- return META_COMMAND_SUCCESS;
复制代码 下面是一个对新的打印函数的测例- + it 'allows printing out the structure of a 3-leaf-node btree' do
- + script = (1..14).map do |i|
- + "insert #{i} user#{i} person#{i}@example.com"
- + end
- + script << ".btree"
- + script << "insert 15 user15 person15@example.com"
- + script << ".exit"
- + result = run_script(script)
- +
- + expect(result[14...(result.length)]).to match_array([
- + "db > Tree:",
- + "- internal (size 1)",
- + " - leaf (size 7)",
- + " - 1",
- + " - 2",
- + " - 3",
- + " - 4",
- + " - 5",
- + " - 6",
- + " - 7",
- + " - key 7",
- + " - leaf (size 7)",
- + " - 8",
- + " - 9",
- + " - 10",
- + " - 11",
- + " - 12",
- + " - 13",
- + " - 14",
- + "db > Need to implement searching an internal node",
- + ])
- + end
复制代码 哦吼!是谁写的TODO信息?(作者在故弄玄虚!明明是他自己在 table_find() 函数中把内部节点搜索的功能存根的!)
下次我们将通过在多级树上实现搜索来继续史诗般的 B 树传奇。
Enjoy GreatSQL
来源:https://www.cnblogs.com/greatsql/p/17121669.html
免责声明:由于采集信息均来自互联网,如果侵犯了您的权益,请联系我们【E-Mail:cb@itdo.tech】 我们会及时删除侵权内容,谢谢合作! |
本帖子中包含更多资源
您需要 登录 才可以下载或查看,没有账号?立即注册
x
|