|
【题目描述】豆瓣图书评论数据爬取。以《平凡的世界》、《都挺好》等为分析对象,编写程序爬取豆瓣读书上针对该图书的短评信息,要求:
(1)对前3页短评信息进行跨页连续爬取;
(2)爬取的数据包含用户名、短评内容、评论时间、评分和点赞数(有用数);
(3)能够根据选择的排序方式(热门或最新)进行爬取,并分别针对热门和最新排序,输出前10位短评信息(包括用户名、短评内容、评论时间、评分和点赞数)。
(4)根据点赞数的多少,按照从多到少的顺序将排名前10位的短评信息输出;
(5附加)结合中文分词和词云生成,对前3页的短评内容进行文本分析:按照词语出现的次数从高到低排序,输出前10位排序结果;并生成一个属于自己的词云图形。
【练习要求】请给出源代码程序和运行测试结果,源代码程序要求添加必要的注释。
- import re
- from collections import Counter
- import requests
- from lxml import etree
- import pandas as pd
- import jieba
- import matplotlib.pyplot as plt
- from wordcloud import WordCloud
- headers = {
- "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/101.0.4951.54 Safari/537.36 Edg/101.0.1210.39"
- }
- comments = []
- words = []
- def regex_change(line):
- # 前缀的正则
- username_regex = re.compile(r"^\d+::")
- # URL,为了防止对中文的过滤,所以使用[a-zA-Z0-9]而不是\w
- url_regex = re.compile(r"""
- (https?://)?
- ([a-zA-Z0-9]+)
- (\.[a-zA-Z0-9]+)
- (\.[a-zA-Z0-9]+)*
- (/[a-zA-Z0-9]+)*
- """, re.VERBOSE | re.IGNORECASE)
- # 剔除日期
- data_regex = re.compile(u""" #utf-8编码
- 年 |
- 月 |
- 日 |
- (周一) |
- (周二) |
- (周三) |
- (周四) |
- (周五) |
- (周六)
- """, re.VERBOSE)
- # 剔除所有数字
- decimal_regex = re.compile(r"[^a-zA-Z]\d+")
- # 剔除空格
- space_regex = re.compile(r"\s+")
- regEx = "[\n”“|,,;;''/?! 。的了是]" # 去除字符串中的换行符、中文冒号、|,需要去除什么字符就在里面写什么字符
- line = re.sub(regEx, "", line)
- line = username_regex.sub(r"", line)
- line = url_regex.sub(r"", line)
- line = data_regex.sub(r"", line)
- line = decimal_regex.sub(r"", line)
- line = space_regex.sub(r"", line)
- return line
- def getComments(url):
- score = 0
- resp = requests.get(url, headers=headers).text
- html = etree.HTML(resp)
- comment_list = html.xpath(".//div[@class='comment']")
- for comment in comment_list:
- status = ""
- name = comment.xpath(".//span[@class='comment-info']/a/text()")[0] # 用户名
- content = comment.xpath(".//p[@class='comment-content']/span[@class='short']/text()")[0] # 短评内容
- content = str(content).strip()
- word = jieba.cut(content, cut_all=False, HMM=False)
- time = comment.xpath(".//span[@class='comment-info']/a/text()")[1] # 评论时间
- mark = comment.xpath(".//span[@class='comment-info']/span/@title") # 评分
- if len(mark) == 0:
- score = 0
- else:
- for i in mark:
- status = str(i)
- if status == "力荐":
- score = 5
- elif status == "推荐":
- score = 4
- elif status == "还行":
- score = 3
- elif status == "较差":
- score = 2
- elif status == "很差":
- score = 1
- good = comment.xpath(".//span[@class='comment-vote']/span[@class='vote-count']/text()")[0] # 点赞数(有用数)
- comments.append([str(name), content, str(time), score, int(good)])
- for i in word:
- if len(regex_change(i)) >= 2:
- words.append(regex_change(i))
- def getWordCloud(words):
- # 生成词云
- all_words = []
- all_words += [word for word in words]
- dict_words = dict(Counter(all_words))
- bow_words = sorted(dict_words.items(), key=lambda d: d[1], reverse=True)
- print("热词前10位:")
- for i in range(10):
- print(bow_words[i])
- text = ' '.join(words)
- w = WordCloud(background_color='white',
- width=1000,
- height=700,
- font_path='simhei.ttf',
- margin=10).generate(text)
- plt.show()
- plt.imshow(w)
- w.to_file('wordcloud.png')
- print("请选择以下选项:")
- print(" 1.热门评论")
- print(" 2.最新评论")
- info = int(input())
- print("前10位短评信息:")
- title = ['用户名', '短评内容', '评论时间', '评分', '点赞数']
- if info == 1:
- comments = []
- words = []
- for i in range(0, 60, 20):
- url = "https://book.douban.com/subject/10517238/comments/?start={}&limit=20&status=P&sort=new_score".format(
- i) # 前3页短评信息(热门)
- getComments(url)
- df = pd.DataFrame(comments, columns=title)
- print(df.head(10))
- print("点赞数前10位的短评信息:")
- df = df.sort_values(by='点赞数', ascending=False)
- print(df.head(10))
- getWordCloud(words)
- elif info == 2:
- comments = []
- words=[]
- for i in range(0, 60, 20):
- url = "https://book.douban.com/subject/10517238/comments/?start={}&limit=20&status=P&sort=time".format(
- i) # 前3页短评信息(最新)
- getComments(url)
- df = pd.DataFrame(comments, columns=title)
- print(df.head(10))
- print("点赞数前10位的短评信息:")
- df = df.sort_values(by='点赞数', ascending=False)
- print(df.head(10))
- getWordCloud(words)
复制代码
来源:https://www.cnblogs.com/youxiandechilun/p/18247606
免责声明:由于采集信息均来自互联网,如果侵犯了您的权益,请联系我们【E-Mail:cb@itdo.tech】 我们会及时删除侵权内容,谢谢合作! |
|