翼度科技»论坛 编程开发 python 查看内容

怎样确定K-means算法中的k值

4

主题

4

帖子

12

积分

新手上路

Rank: 1

积分
12
1. K-means算法

k-means算法是机器学习中常用的聚类算法,原理简单实现容易,内存占用量也比较小。但使用这个方法时,需要事先指定将要聚合成的簇数

在先验知识缺乏的情况下,想要确定
是非常困难的。
目前常用的用来确定
的方法主要有两种:肘部法、轮廓系数法。

2. 初始k值的选择


1) 肘部法

肘部法所使用的聚类评价指标为:数据集中所有样本点到其簇中心的距离之和的平方。但是肘部法选择的并不是误差平方和最小的
,而是误差平方和突然变小时对应的
值。

2) 轮廓系数法

轮廓系数是一种非常常用的聚类效果评价指标。该指标结合了内聚度和分离度两个因素。其具体计算过程如下:
假设已经通过聚类算法将待分类的数据进行了聚类,并最终得到了
个簇。
对于每个簇中的每个样本点
,分别计算其轮廓系数。
具体地,需要对每个样本点
计算以下两个指标:
:样本点
到与其属于同一个簇的其他样本点的距离的平均值。
越小,说明该样本
属于该类的可能性越大。
:样本点
到其他簇
中的所有样本的平均距离
的最小值 ,

则样本点
的轮廓系数为:

而所有样本点
的轮廓系数的平均值,即为该聚类结果总的轮廓系数

越接近与1,聚类效果越好。

3) 具体案例

先利用sklearn.datasets中的方法生成自己的聚类数据集。
具体如下:

对数据x进行归一化(因为KMeans算法中涉及到距离的计算),具体如下:

使用肘部法确定
值,其代码如下:

使用轮廓系数确定
值,其代码如下:


总结

以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。

来源:https://www.jb51.net/python/323484g3f.htm
免责声明:由于采集信息均来自互联网,如果侵犯了您的权益,请联系我们【E-Mail:cb@itdo.tech】 我们会及时删除侵权内容,谢谢合作!

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有账号?立即注册

x

举报 回复 使用道具