翼度科技»论坛 编程开发 mysql 查看内容

第三十八讲:自增主键为什么不是连续的

5

主题

5

帖子

15

积分

新手上路

Rank: 1

积分
15
第三十八讲:自增主键为什么不是连续的

简概


引言

​        在第 4 篇文章中,我们提到过自增主键,由于自增主键可以让主键索引尽量地保持递增顺序插入,避免了页分裂,因此索引更紧凑。
​        之前我见过有的业务设计依赖于自增主键的连续性,也就是说,这个设计假设自增主键是连续的。
​        但实际上,这样的假设是错的,因为自增主键不能保证连续递增。今天这篇文章,我们就来说说这个问题,看看什么情况下自增主键会出现 “空洞”?
​        为了便于说明,我们创建一个表 t,其中 id 是自增主键字段、c 是唯一索引。
  1. CREATE TABLE `t` (
  2.   `id` int(11) NOT NULL AUTO_INCREMENT,
  3.   `c` int(11) DEFAULT NULL,
  4.   `d` int(11) DEFAULT NULL,
  5.   PRIMARY KEY (`id`),
  6.   UNIQUE KEY `c` (`c`)
  7. ) ENGINE=InnoDB;
复制代码
记住这边的unique,后面要考
自增值保存在哪儿?

​        在这个空表 t 里面执行 insert into t values(null, 1, 1); 插入一行数据,再执行 show create table 命令,就可以看到如下图所示的结果:
   
   
          图 1 自动生成的 AUTO_INCREMENT 值          ​        可以看到,表定义里面出现了一个 AUTO_INCREMENT=2,表示下一次插入数据时,如果需要自动生成自增值,会生成 id=2。
​        其实,这个输出结果容易引起这样的误解:自增值是保存在表结构定义里的。实际上,表的结构定义存放在后缀名为.frm 的文件中,但是并不会保存自增值。
如何查看当前表的下一个自增主键值是多少? Show create table查看表信息,里面有个AUTO_INCREMENT=某个值,这个值就是下一个自增主键的值。MySQL自增主键的存放策略根据存储引擎的不同而不同
​        不同的引擎对于自增值的保存策略不同。

  • MyISAM 引擎的自增值保存在数据文件中。
  • InnoDB 引擎的自增值,其实是保存在了内存里,并且到了 MySQL 8.0 版本后,才有了“自增值持久化”的能力,也就是才实现了“如果发生重启,表的自增值可以恢复为 MySQL 重启前的值”,具体情况是:

    • 在 MySQL 5.7 及之前的版本,自增值保存在内存里,并没有持久化。每次重启后,第一次打开表的时候,都会去找自增值的最大值 max(id),然后将 max(id)+1 作为这个表当前的自增值。
      ​        举例来说,如果一个表当前数据行里最大的 id 是 10,AUTO_INCREMENT=11。这时候,我们删除 id=10 的行,AUTO_INCREMENT 还是 11。但如果马上重启实例,重启后这个表的 AUTO_INCREMENT 就会变成 10。
      ​        也就是说,MySQL 重启可能会修改一个表的 AUTO_INCREMENT 的值。
      在 MySQL 8.0 版本,将自增值的变更记录在了 redo log 中,重启的时候依靠 redo log 恢复重启之前的值。

​        理解了 MySQL 对自增值的保存策略以后,我们再看看自增值修改机制。
自增值修改机制

​        在 MySQL 里面,如果字段 id 被定义为 AUTO_INCREMENT,在插入一行数据的时候,自增值的行为如下:

  • 如果插入数据时 id 字段指定为 0、null 或未指定值,那么就把这个表当前的 AUTO_INCREMENT 值填到自增字段;
  • 如果插入数据时 id 字段指定了具体的值,就直接使用语句里指定的值。
​        根据要插入的值和当前自增值的大小关系,自增值的变更结果也会有所不同。假设,某次要插入的值是 X,当前的自增值是 Y。
<ul>
如果 X= 当前自增值,新的自增值就是“准备插入的值 +1”;
否则,自增值不变。
</ol>​        这就引入了我们文章开头提到的问题,在这两个参数都设置为 1 的时候,自增主键 id 却不能保证是连续的,这是什么原因呢?
自增值的修改时机

​        要回答这个问题,我们就要看一下自增值的修改时机。假设,表 t 里面已经有了 (1,1,1) 这条记录,这时我再执行一条插入数据命令:
  1. insert into t values(null, 1, 1);
复制代码
这个语句的执行流程就是:

  • 执行器调用 InnoDB 引擎接口写入一行,传入的这一行的值是 (0,1,1);
  • InnoDB 发现用户没有指定自增 id 的值,获取表 t 当前的自增值 2;
  • 将传入的行的值改成 (2,1,1);
  • 将表的自增值改成 3;
  • 继续执行插入数据操作,由于已经存在 c=1 的记录,所以报 Duplicate key error,语句返回。
对应的执行流程图如下:
   
   
          图 2 insert(null, 1,1) 唯一键冲突          ​        可以看到,这个表的自增值改成 3,是在真正执行插入数据的操作之前。这个语句真正执行的时候,因为碰到唯一键 c 冲突,所以 id=2 这一行并没有插入成功,但也没有将自增值再改回去。
​        所以,在这之后,再插入新的数据行时,拿到的自增 id 就是 3。
​        也就是说,出现了自增主键不连续的情况。如图 3 所示就是完整的演示结果。
   
   
          图 3 一个自增主键 id 不连续的复现步骤          ​        可以看到,这个操作序列复现了一个自增主键 id 不连续的现场 (没有 id=2 的行)。
​        可见,唯一键冲突是导致自增主键 id 不连续的第一种原因。
​        同样地,事务回滚也会产生类似的现象,这就是第二种原因。
​        下面这个语句序列就可以构造不连续的自增 id,你可以自己验证一下。
  1. insert into t values(null,1,1);
  2. begin;
  3. insert into t values(null,2,2);
  4. rollback;
  5. insert into t values(null,2,2);
  6. //插入的行是(3,2,2)
复制代码
​        你可能会问,为什么在出现唯一键冲突或者回滚的时候,MySQL 没有把表 t 的自增值改回去呢?
​        如果把表 t 的当前自增值从 3 改回 2,再插入新数据的时候,不就可以生成 id=2 的一行数据了吗?
​        其实,MySQL 这么设计是为了提升性能。接下来,我就跟你分析一下这个设计思路,看看自增值为什么不能回退。
​        假设有两个并行执行的事务,在申请自增值的时候,为了避免两个事务申请到相同的自增 id,肯定要加锁,然后顺序申请。

  • 假设事务 A 申请到了 id=2, 事务 B 申请到 id=3,那么这时候表 t 的自增值是 4,之后继续执行。
  • 事务 B 正确提交了,但事务 A 出现了唯一键冲突。
  • 如果允许事务 A 把自增 id 回退,也就是把表 t 的当前自增值改回 2,那么就会出现这样的情况:表里面已经有 id=3 的行,而当前的自增 id 值是 2。
  • 接下来,继续执行的其他事务就会申请到 id=2,然后再申请到 id=3。这时,就会出现插入语句报错“主键冲突”。
​        而为了解决这个主键冲突,有两种方法:

  • 每次申请 id 之前,先判断表里面是否已经存在这个 id。如果存在,就跳过这个 id。但是,这个方法的成本很高。因为,本来申请 id 是一个很快的操作,现在还要再去主键索引树上判断 id 是否存在。
  • 把自增 id 的锁范围扩大,必须等到一个事务执行完成并提交,下一个事务才能再申请自增 id。这个方法的问题,就是锁的粒度太大,系统并发能力大大下降。
​        可见,这两个方法都会导致性能问题。造成这些麻烦的罪魁祸首,就是我们假设的这个“允许自增 id 回退”的前提导致的。因此,InnoDB 放弃了这个设计,语句执行失败也不回退自增 id。也正是因为这样,所以才只保证了自增 id 是递增的,但不保证是连续的。
自增锁的优化

​        可以看到,自增 id 锁并不是一个事务锁,而是每次申请完就马上释放,以便允许别的事务再申请。其实,在 MySQL 5.1 版本之前,并不是这样的。
​        接下来,我会先给你介绍下自增锁设计的历史,这样有助于你分析接下来的一个问题。
​        在 MySQL 5.0 版本的时候,自增锁的范围是语句级别。也就是说,如果一个语句申请了一个表自增锁,这个锁会等语句执行结束以后才释放。显然,这样设计会影响并发度。MySQL 5.1.22 版本引入了一个新策略,新增参数 innodb_autoinc_lock_mode,默认值是 1。

  • 这个参数的值被设置为 0 时,表示采用之前 MySQL 5.0 版本的策略,即语句执行结束后才释放锁;
  • 这个参数的值被设置为 1 时:

    • 普通 insert 语句,自增锁在申请之后就马上释放;
    • 类似 insert … select 这样的批量插入数据的语句,自增锁还是要等语句结束后才被释放;

  • 这个参数的值被设置为 2 时,所有的申请自增主键的动作都是申请后就释放锁。
​        你一定有两个疑问:为什么默认设置下,insert … select 要使用语句级的锁?为什么这个参数的默认值不是 2?
​        答案是,这么设计还是为了数据的一致性。我们一起来看一下这个场景:
   
   
          图 4 批量插入数据的自增锁          ​        在这个例子里,我往表 t1 中插入了 4 行数据,然后创建了一个相同结构的表 t2,然后两个 session 同时执行向表 t2 中插入数据的操作。
​        你可以设想一下,如果 session B 是申请了自增值以后马上就释放自增锁,那么就可能出现这样的情况:

  • session B 先插入了两个记录,(1,1,1)、(2,2,2);
  • 然后,session A 来申请自增 id 得到 id=3,插入了(3,5,5);
  • 之后,session B 继续执行,插入两条记录 (4,3,3)、 (5,4,4)。
​        你可能会说,这也没关系吧,毕竟 session B 的语义本身就没有要求表 t2 的所有行的数据都跟 session A 相同。是的,从数据逻辑上看是对的。但是,如果我们现在的 binlog_format=statement,你可以设想下,binlog 会怎么记录呢?
​        由于两个 session 是同时执行插入数据命令的,所以 binlog 里面对表 t2 的更新日志只有两种情况:要么先记 session A 的,要么先记 session B 的。
​        但不论是哪一种,这个 binlog 拿去从库执行,或者用来恢复临时实例,备库和临时实例里面,session B 这个语句执行出来,生成的结果里面,id 都是连续的。这时,这个库就发生了数据不一致。你可以分析一下,出现这个问题的原因是什么?
​        其实,这是因为原库 session B 的 insert 语句,生成的 id 不连续。这个不连续的 id,用 statement 格式的 binlog 来串行执行,是执行不出来的。
​        而要解决这个问题,有两种思路:

  • 一种思路是,让原库的批量插入数据语句,固定生成连续的 id 值。所以,自增锁直到语句执行结束才释放,就是为了达到这个目的。
  • 另一种思路是,在 binlog 里面把插入数据的操作都如实记录进来,到备库执行的时候,不再依赖于自增主键去生成。这种情况,其实就是 innodb_autoinc_lock_mode 设置为 2,同时 binlog_format 设置为 row。
​        因此,在生产上,尤其是有 insert … select 这种批量插入数据的场景时,从并发插入数据性能的角度考虑,我建议你这样设置:innodb_autoinc_lock_mode=2 ,并且 binlog_format=row.
​        这样做,既能提升并发性,又不会出现数据一致性问题。需要注意的是,我这里说的批量插入数据,包含的语句类型是 insert … select、replace … select 和 load data 语句。
​        但是,在普通的 insert 语句里面包含多个 value 值的情况下,即使 innodb_autoinc_lock_mode 设置为 1,也不会等语句执行完成才释放锁。因为这类语句在申请自增 id 的时候,是可以精确计算出需要多少个 id 的,然后一次性申请,申请完成后锁就可以释放了。
​        也就是说,批量插入数据的语句,之所以需要这么设置,是因为“不知道要预先申请多少个 id”。
​        既然预先不知道要申请多少个自增 id,那么一种直接的想法就是需要一个时申请一个。
​        但如果一个 select … insert 语句要插入 10 万行数据,按照这个逻辑的话就要申请 10 万次。
​        显然,这种申请自增 id 的策略,在大批量插入数据的情况下,不但速度慢,还会影响并发插入的性能。因此,对于批量插入数据的语句,MySQL 有一个批量申请自增 id 的策略:

  • 语句执行过程中,第一次申请自增 id,会分配 1 个;
  • 1 个用完以后,这个语句第二次申请自增 id,会分配 2 个;
  • 2 个用完以后,还是这个语句,第三次申请自增 id,会分配 4 个;
  • 依此类推,同一个语句去申请自增 id,每次申请到的自增 id 个数都是上一次的两倍。
​        举个例子,我们一起看看下面的这个语句序列:
  1. insert into t values(null, 1,1);
  2. insert into t values(null, 2,2);
  3. insert into t values(null, 3,3);
  4. insert into t values(null, 4,4);
  5. create table t2 like t;
  6. insert into t2(c,d) select c,d from t;
  7. insert into t2 values(null, 5,5);
复制代码
​        insert…select,实际上往表 t2 中插入了 4 行数据。
​        但是,这四行数据是分三次申请的自增 id,第一次申请到了 id=1,第二次被分配了 id=2 和 id=3, 第三次被分配到 id=4 到 id=7。
​        由于这条语句实际只用上了 4 个 id,所以 id=5 到 id=7 就被浪费掉了。
​        之后,再执行 insert into t2 values(null, 5,5),实际上插入的数据就是(8,5,5)。这是主键 id 出现自增 id 不连续的第三种原因。
小结

​        今天,我们从“自增主键为什么会出现不连续的值”这个问题开始,首先讨论了自增值的存储。在 MyISAM 引擎里面,自增值是被写在数据文件上的。而在 InnoDB 中,自增值是被记录在内存的。MySQL 直到 8.0 版本,才给 InnoDB 表的自增值加上了持久化的能力,确保重启前后一个表的自增值不变。
​        然后,我和你分享了在一个语句执行过程中,自增值改变的时机,分析了为什么 MySQL 在事务回滚的时候不能回收自增 id。MySQL 5.1.22 版本开始引入的参数 innodb_autoinc_lock_mode,控制了自增值申请时的锁范围。
​        从并发性能的角度考虑,我建议你将其设置为 2,同时将 binlog_format 设置为 row。我在前面的文章中其实多次提到,binlog_format 设置为 row,是很有必要的。今天的例子给这个结论多了一个理由。
问答

​        最后,我给你留一个思考题吧。在最后一个例子中,执行 insert into t2(c,d) select c,d from t; 这个语句的时候,如果隔离级别是可重复读(repeatable read),binlog_format=statement。这个语句会对表 t 的所有记录和间隙加锁。你觉得为什么需要这么做呢?
答案

见下期

来源:https://www.cnblogs.com/guixiangyyds/p/18577577
免责声明:由于采集信息均来自互联网,如果侵犯了您的权益,请联系我们【E-Mail:cb@itdo.tech】 我们会及时删除侵权内容,谢谢合作!

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有账号?立即注册

x

举报 回复 使用道具