|
前言
在做色彩相关的算法分析时候,经常需要使用规则的颜色表来进行辅助。下面用python(numpy和opencv)来生成颜色表并保存为图片。
有两种类型:
长的样子分别如下:
格子颜色表
这里需要注意,当划分的颜色数量比较少时,最好把一个颜色像素扩展成为一个格子,不然的话整个图看起来就太小了。- # -*- coding: utf-8 -*-
- import cv2
- import numpy as np
- def generate_color_chart(block_num=18,
- block_columns=6,
- grid_width=32,
- grid_height=None):
- """
- Generate color chart by uniformly distributed color indexes, only support
- 8 bit (uint8).
- Parameters
- ----------
- block_num: Block number of color chart, also the number of color indexes.
- block_columns: Column number of color chart. Row number is computed by
- block_num / block_columns
- grid_width: Width of color grid
- grid_height: Height of color grid. If not set, it will equal to grid_width.
- """
- color_index = np.linspace(0, 255, block_num)
- color_index = np.uint8(np.round(color_index))
- if grid_height is None:
- grid_height = grid_width
- # compute sizes
- block_rows = np.int_(np.ceil(block_num / block_columns))
- block_width = grid_width * block_num
- block_height = grid_height * block_num
- width = block_width * block_columns
- height = block_height * block_rows
- result = np.zeros((height, width, 3), dtype=np.uint8)
- # compute red-green block, (blue will be combined afterward)
- red_block, green_block = np.meshgrid(color_index, color_index)
- red_block = expand_pixel_to_grid(red_block, grid_width, grid_height)
- green_block = expand_pixel_to_grid(green_block, grid_width, grid_height)
- rg_block = np.concatenate([red_block, green_block], axis=2)
- # combine blue channel
- for i in range(block_num):
- blue = np.ones_like(rg_block[..., 0], dtype=np.uint8) * color_index[i]
- color_block = np.concatenate([rg_block, blue[..., np.newaxis]], axis=2)
- # compute block index
- block_row = i // block_columns
- block_column = i % block_columns
- xmin = block_column * block_width
- ymin = block_row * block_height
- xmax = xmin + block_width
- ymax = ymin + block_height
- result[ymin:ymax, xmin:xmax, :] = color_block
- result = result[..., ::-1] # convert from rgb to bgr
- return result
- def expand_pixel_to_grid(matrix, grid_width, grid_height):
- """
- Expand a pixel to a grid. Inside the grid, every pixel have the same value
- as the source pixel.
- Parameters
- ----------
- matrix: 2D numpy array
- grid_width: width of grid
- grid_height: height of grid
- """
- height, width = matrix.shape[:2]
- new_heigt = height * grid_height
- new_width = width * grid_width
- repeat_num = grid_width * grid_height
- matrix = np.expand_dims(matrix, axis=2).repeat(repeat_num, axis=2)
- matrix = np.reshape(matrix, (height, width, grid_height, grid_width))
- # put `height` and `grid_height` axes together;
- # put `width` and `grid_width` axes together.
- matrix = np.transpose(matrix, (0, 2, 1, 3))
- matrix = np.reshape(matrix, (new_heigt, new_width, 1))
- return matrix
- if __name__ == '__main__':
- color_chart16 = generate_color_chart(block_num=16,
- grid_width=32,
- block_columns=4)
- color_chart18 = generate_color_chart(block_num=18,
- grid_width=32,
- block_columns=6)
- color_chart36 = generate_color_chart(block_num=36,
- grid_width=16,
- block_columns=6)
- color_chart52 = generate_color_chart(block_num=52,
- grid_width=8,
- block_columns=13)
- color_chart256 = generate_color_chart(block_num=256,
- grid_width=1,
- block_columns=16)
- cv2.imwrite('color_chart16.png', color_chart16)
- cv2.imwrite('color_chart18.png', color_chart18)
- cv2.imwrite('color_chart36.png', color_chart36)
- cv2.imwrite('color_chart52.png', color_chart52)
- cv2.imwrite('color_chart256.png', color_chart256)
复制代码 渐变色带
- # -*- coding: utf-8 -*-
- import cv2
- import numpy as np
- def generate_color_band(left_colors, right_colors, grade=256, height=32):
- """
- Generate color bands by uniformly changing from left colors to right
- colors. Note that there might be multiple bands.
- Parameters
- ----------
- left_colors: Left colors of the color bands.
- right_colors: Right colors of the color bands.
- grade: how many colors are contained in one color band.
- height: height of one color band.
- """
- # check and process color parameters, which should be 2D list
- # after processing
- if not isinstance(left_colors, (tuple, list)):
- left_colors = [left_colors]
- if not isinstance(right_colors, (tuple, list)):
- right_colors = [right_colors]
- if not isinstance(left_colors[0], (tuple, list)):
- left_colors = [left_colors]
- if not isinstance(right_colors[0], (tuple, list)):
- right_colors = [right_colors]
- # initialize channel, and all other colors should have the same channel
- channel = len(left_colors[0])
- band_num = len(left_colors)
- result = []
- for i in range(band_num):
- left_color = left_colors[i]
- right_color = right_colors[i]
- if len(left_color) != channel or len(right_color) != channel:
- raise ValueError("All colors should have same channel number")
- color_band = np.linspace(left_color, right_color, grade)
- color_band = np.expand_dims(color_band, axis=0)
- color_band = np.repeat(color_band, repeats=height, axis=0)
- color_band = np.clip(np.round(color_band), 0, 255).astype(np.uint8)
- result.append(color_band)
- result = np.concatenate(result, axis=0)
- result = np.squeeze(result)
- return result
- if __name__ == '__main__':
- black = [0, 0, 0]
- white = [255, 255, 255]
- red = [0, 0, 255]
- green = [0, 255, 0]
- blue = [255, 0, 0]
- gray_band = generate_color_band([[0], [255]], [[255], [0]])
- color_band8 = generate_color_band(
- [black, white, red, green, blue, black, black, black],
- [white, black, white, white, white, red, green, blue]
- )
- cv2.imwrite('gray_band.png', gray_band)
- cv2.imwrite('color_band8.png', color_band8)
复制代码 到此这篇关于利用Python实现生成颜色表(color chart)的文章就介绍到这了,更多相关Python颜色表内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!
来源:https://www.jb51.net/article/283828.htm
免责声明:由于采集信息均来自互联网,如果侵犯了您的权益,请联系我们【E-Mail:cb@itdo.tech】 我们会及时删除侵权内容,谢谢合作! |
本帖子中包含更多资源
您需要 登录 才可以下载或查看,没有账号?立即注册
x
|