Tensorflow训练模型默认占满所有GPU的解决方案
|
Tensorflow训练模型默认占满所有GPU问题
在使用gpu服务器训练tensorflow模型时,总是占满显存!
TensorFlow默认的是占用所有GPU
因此我们需要手动设置使用的GPU编号以及单个GPU显存占用比例
1.第一步需要在代码中开头加入 - import os
- os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" # 按照PCI_BUS_ID顺序从0开始排列GPU设备
- os.environ["CUDA_VISIBLE_DEVICES"]=‘0' # 使用0号gpu(想使用其他编号GPU,对应修改引号中的内容即可)
- os.environ["CUDA_VISIBLE_DEVICES"]=‘0,1' # 使用0号GPU和1号GPU
复制代码 2.第二步需要将代码中的sess = tf.Session()改为- gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.333) # 通过改变0.333可以改变占用显存比例
- sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))
复制代码 per_process_gpu_memory_fraction=0.333代表的含义就是每个GPU进程中使用显存的上限为该GPU总量的1/3
3.如果想要在程序运行过程中连续查看GPU信息
可以在终端使用该 指令(执行指令:watch -n 3 -d nvidia-smi # 每隔三秒输出一次)(前提是设备中有合适的NVIDIA驱动)
解决tensorflow2.2把GPU显存占满
安装了tensorflow-gpu后,运行程序默认是把GPU的内存全部占满的,有时我们不想全部占满,可以这样操作。
解决代码
- import tensorflow as tf
- import os
- os.environ['CUDA_VISIBLE_DEVICES']="0" # 指定哪块GPU训练
- config=tf.compat.v1.ConfigProto()
- # 设置最大占有GPU不超过显存的80%(可选)
- # config.gpu_options.per_process_gpu_memory_fraction=0.8
- config.gpu_options.allow_growth = True # 设置动态分配GPU内存
- sess=tf.compat.v1.Session(config=config)
复制代码 如图:
总结
以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。
来源:https://www.jb51.net/article/283816.htm
免责声明:由于采集信息均来自互联网,如果侵犯了您的权益,请联系我们【E-Mail:cb@itdo.tech】 我们会及时删除侵权内容,谢谢合作! |
本帖子中包含更多资源
您需要 登录 才可以下载或查看,没有账号?立即注册
x
|
|
|
发表于 2023-5-12 00:27:45
举报
回复
分享
|
|
|
|