|
摘要:本篇文章将从一个实际项目出发,分享如何使用 Spark 进行大规模日志分析,并通过代码演示加深读者的理解。 本文分享自华为云社区《【实战经验分享】基于Spark的大规模日志分析【上进小菜猪大数据系列】》,作者:上进小菜猪。
随着互联网的普及和应用范围的扩大,越来越多的应用场景需要对海量数据进行高效地处理和分析,这就要求我们必须具备大数据技术方面的知识和技能。本篇文章将从一个实际项目出发,分享如何使用 Spark 进行大规模日志分析,并通过代码演示加深读者的理解。
1.数据来源
我们的项目是针对某购物网站的访问日志进行分析,其中主要包含以下几个字段:
- IP:访问的客户端 IP 地址
- Time:访问时间
- Url:访问的 URL 地址
- User-Agent:浏览器标识符
原始数据规模约为 100GB,我们需要对其进行清洗、统计和分析,以得到有用的信息和价值。
2. 数据清洗
由于原始数据存在缺失值、异常值、重复值等问题,因此我们需要进行数据清洗,主要包括以下步骤:
- 将原始数据进行格式转换,方便后续处理
- 对 IP、Time、Url 和 User-Agent 字段进行解析和提取
- 去除不合法的记录和重复的记录
具体代码实现如下:- import org.apache.spark.{SparkConf, SparkContext}
- import java.text.SimpleDateFormat
- import java.util.Locale
-
- object DataCleaning {
- def main(args: Array[String]) {
- val conf = new SparkConf().setAppName("DataCleaning")
- val sc = new SparkContext(conf)
- val data = sc.textFile("hdfs://master:9000/log/access.log")
-
- // 定义时间格式及地区信息
- val dateFormat = new SimpleDateFormat("dd/MMM/yyyy:HH:mm:ss Z", Locale.ENGLISH)
-
- // 数据清洗
- val cleanData = data.map(line => {
- val arr = line.split(" ")
- if (arr.length >= 9) {
- // 解析 IP
- val ip = arr(0)
-
- // 解析时间,转换为 Unix 时间戳
- val time = dateFormat.parse(arr(3) + " " + arr(4)).getTime / 1000
-
- // 解析 URL
- val url = urlDecode(arr(6))
-
- // 解析 UserAgent
- val ua = arr(8)
-
- (ip, time, url, ua)
- }
- }).filter(x => x != null).distinct()
-
- // 结果输出
- cleanData.saveAsTextFile("hdfs://master:9000/cleanData")
-
- sc.stop()
- }
-
- // URL 解码
- def urlDecode(url: String): String = {
- java.net.URLDecoder.decode(url, "utf-8")
- }
- }
复制代码 3. 数据统计
对于大规模数据的处理,我们可以使用 Spark 提供的强大的分布式计算能力,以提高处理效率和减少计算时间。
我们这里使用 Spark SQL 统计每个 URL 的访问量,并输出前 10 个访问量最高的 URL,代码如下:- import org.apache.spark.{SparkConf, SparkContext}
- import org.apache.spark.sql.SQLContext
-
- case class LogRecord(ip: String, time: Long, url: String, ua: String)
-
- object DataAnalysis {
- def main(args: Array[String]) {
- val conf = new SparkConf().setAppName("DataAnalysis")
- val sc = new SparkContext(conf)
- val sqlContext = new SQLContext(sc)
-
- // 读取清洗后的数据
- val cleanData = sc.textFile("hdfs://master:9000/cleanData").filter(x => x != null)
-
- // 将数据转换为 DataFrame
- import sqlContext.implicits._
- val logDF = cleanData.map(_.split(",")).map(p => LogRecord(p(0), p(1).toLong, p(2), p(3))).toDF()
-
- // 统计每个 URL 的访问量,并按访问量降序排序
- val topUrls = logDF.groupBy("url").count().sort($"count".desc)
-
- // 输出前 10 个访问量最高的 URL
- topUrls.take(10).foreach(println)
-
- sc.stop()
- }
- }
复制代码 4. 数据可视化
数据可视化是将处理和分析后的数据以图表或图像的方式展示出来,有利于我们直观地观察数据的规律和趋势。
我们这里采用 Python 的 Matplotlib 库将前 10 个访问量最高的 URL 可视化,代码如下:- import matplotlib.pyplot as plt
-
- # 读取数据
- with open('topUrls.txt', 'r') as f:
- line = f.readline()
- urls = []
- counts = []
- while line and len(urls) < 10:
- url, count = line.strip().split(',')
- urls.append(url)
- counts.append(int(count))
- line = f.readline()
- # 绘制直方图
- plt.bar(range(10), counts, align='center')
- plt.xticks(range(10), urls, rotation=90)
- plt.xlabel('Url')
- plt.ylabel('Count')
- plt.title('Top 10 Url')
- plt.show()
复制代码 在进行数据清洗前,需要先对原始日志数据进行筛选,选取需要分析的字段。然后进行数据清洗,去掉不必要的空格、特殊字符等,使数据更加规整,并增加可读性。
下面是数据清洗的代码示例:- val originalRdd = spark.sparkContext.textFile("path/to/logfile")
-
- val filteredRdd = originalRdd.filter(line => {
- val tokens = line.split("\t")
- tokens.length >= 10 &&
- tokens(0).matches("\d{4}-\d{2}-\d{2}") &&
- tokens(1).matches("\d{2}:\d{2}:\d{2}") &&
- tokens(2).matches("\d+") &&
- tokens(3).matches("\d+") &&
- tokens(4).matches("\d+") &&
- tokens(5).matches("\d+") &&
- tokens(6).matches(".+") &&
- tokens(7).matches(".+") &&
- tokens(8).matches(".+") &&
- tokens(9).matches(".+")
- })
-
- val cleanedRdd = filteredRdd.map(line => {
- val tokens = line.split("\t")
- val timestamp = s"${tokens(0)} ${tokens(1)}"
- val request = tokens(6).replaceAll(""", "")
- val responseCode = tokens(8).toInt
- (timestamp, request, responseCode)
- })
复制代码 在上述代码中,我们首先读取原始日志数据,并使用filter函数过滤掉不符合条件的行;然后使用map函数将数据转换为元组的形式,并进行清洗。其中,元组的三个元素分别是时间戳、请求内容和响应状态码。
接下来,让我们来介绍一下如何使用Spark进行数据统计。
数据统计是大规模数据分析中非常重要的一个环节。Spark提供了丰富的聚合函数,可用于对数据进行各种统计分析。
下面是对清洗后的数据进行统计分析的代码示例:- import org.apache.spark.sql.functions._
-
- val df = spark.createDataFrame(cleanedRdd).toDF("timestamp", "request", "responseCode")
- val totalCount = df.count()
- val errorsCount = df.filter(col("responseCode") >= 400).count()
- val successCount = totalCount - errorsCount
- val topEndpoints = df.groupBy("request").count().orderBy(desc("count")).limit(10)
- topEndpoints.show()
复制代码 在上面的代码中,我们首先将清洗后的数据转换为DataFrame,然后使用count函数计算总记录数和错误记录数,并计算成功记录数。最后使用groupBy和orderBy函数按照请求内容,对数据进行分组统计,并打印出请求次数最多的前10个端点。
通过可视化,我们可以清楚地看到前 10 个访问量最高的 URL 地址及其访问量,这对于进一步分析和优化网站的性能和用户体验具有重要的意义。
总结起来,这就是我们的一个大数据实战项目,我们使用 Spark 统计了购物网站的访问量,并通过 Python 的 Matplotlib 库将结果可视化。这个过程中,我们运用了数据清洗、Spark SQL 统计和可视化等技术,为大规模数据的处理和分析提供了有效的解决方案。
点击关注,第一时间了解华为云新鲜技术~
来源:https://www.cnblogs.com/huaweiyun/p/17482314.html
免责声明:由于采集信息均来自互联网,如果侵犯了您的权益,请联系我们【E-Mail:cb@itdo.tech】 我们会及时删除侵权内容,谢谢合作! |
|