|
一. 索引概述
1. 介绍
索引是帮助MySQL高效获取数据的数据结构(有序)。在数据之外,数据库系统还维护着满足特定查找算法的数据结构,这些数据结构以某种方式引用(指向)数据,这样就可以在这些数据结构上实现高级查找算法,这种数据结构就是索引。
2. 演示
表结构及其数据如下:
假如我们要执行的SQL语句为:select * from user where age = 45;
(1). 无索引情况
在无索引情况下,就需要从第一行开始扫描,一直扫描到最后一行,我们称之为 全表扫描,性能很低。
(2). 有索引情况
如果我们针对于这张表建立了索引,假设索引结构就是二叉树,那么也就意味着,会对age这个字段建立一个二叉树的索引结构。
此时我们在进行查询时,只需要扫描三次就可以找到数据了,极大的提高了查询的效率。
注:这里我们只是假设索引的结构是二叉树,介绍一下索引的大概原理,只是一个示意图,并不是索引的真实结构,索引的真实结构,下面会有介绍。
3. 特点
优势劣势提高数据检索的效率,降低数据库的IO成本索引列也是要占用空间的通过索引列对数据进行排序,降低数据排序的成本,降低CPU的消耗索引大大提高了查询效率,同时却也降低了更新表的速度,如对表进行INSERT、UPDATE、DELETE时,效率降低二. 索引结构
1. 简介
MySQL的索引是在存储引擎层实现的,不同的存储引擎有不同的索引结构,主要包含以下几种:
索引结构描述B+Tree索引最常见的索引类型,大部分引擎都支持B+树索引Hash索引底层数据结构是用哈希表实现的,只有精确匹配索引列的查询才有效,不支持范围查询R-tree(空间索引)空间索引是MyISAM引擎的一个特殊索引类型,主要用于地理空间数据类型,通常使用较少Full-text(全文索引)全文索引是一种通过建立倒排索引,快速匹配文档的方式。类似于Lucene,Solr,ES上述是MySQL中所支持的所有索引结构,接下来,我们再来看看不同的存储引擎对于索引结构的支持情况。
索引InnoDBMyISAMMemoryB+tree索引支持支持支持Hash索引不支持不支持支持R-tree索引不支持支持不支持Full-text索引5.6版本之后支持支持不支持2. 二叉树
假如说MySQL的索引结构采用二叉树的数据结构,比较理想的结构如下:
如果主键是顺序插入的,则会形成一个单向链表,结构如下:
所以,如果选择二叉树作为索引结构,会存在以下缺点:
- 顺序插入时,会形成一个链表,查询性能大大降低。
- 大数据量情况下,层级较深,检索速度慢
此时可能会想到,我们可以选择红黑树,红黑树是一颗自平衡二叉树,那这样即使是顺序插入数据,最终形成的数据结构也是一颗平衡的二叉树,结构如下:
但是,即使如此,由于红黑树也是一颗二叉树,所以也会存在一个缺点:
所以,在MySQL的索引结构中,并没有选择二叉树或者红黑树,而是选择B+Tree,在详解B+Tree之前,先来介绍一个B-Tree。
3. B-Tree
B-Tree,B树是一种多叉路平衡查找树,相对于二叉树,B树每个节点可以有多个分支,即多叉。
以一颗最大度数(max-degree)为5(5阶)的b-tree为例,那这个B树每个节点最多存储4个key,5个指针:
注:树的度数指的是一个节点的子节点格式
特点:
- 5阶的B树,每一个节点最多存储4个key,对应5个指针。
- 一旦节点存储的key数量达到5,就会裂变,中间元素向上分裂。
- 在B树中,非叶子节点和叶子节点都会存放数据。
4. B+Tree
B+Tree是B-Tree的变种,我们以一颗最大度数(max-degree)为4(4阶)的b+tree为例,来看一下其结构示意图:
我们可以看到,两部分:
- 绿色框框起来的部分,是索引部分,仅仅起到索引数据的作用,不存储数据。
- 红色框框起来的部分,是数据存储部分,在其叶子节点中要存储具体的数据。
B+Tree和B-Tree相比,主要有以下三点区别:
- 所有的数据都会出现在叶子节点。
- 叶子节点形成一个单向链表。
- 非叶子节点仅仅起到索引数据作用,具体的数据都是在叶子节点存放的。
上述我们所看到的结构是标准的B+Tree的数据结构,接下来,我们再来看看MySQL优化之后的B+Tree。
MySQL索引数据结构对经典的B+Tree进行了优化。在原B+Tree的基础上,增加一个指向相邻叶子节点的链表指针,就形成了带有顺序指针的B+Tree,提高区间访问的性能,利于排序。
5. Hash
MySQL中除了支持B+Tree索引,还支持一种索引---Hash索引。
(1). 结构
哈希索引就是采用一定的hash算法,将键值换算成新的hash值,映射到对应的槽位上,然后存储在hash表中。
如果两个(或多个)键值,映射到一个相同的槽位上,他们就产生了hash冲突(也称为hash碰撞),可以通过链表来解决。
(2). 特点
<ul>
<strong>Hash索引只能用于对等比较(=,in),不支持范围查询(between,>,, 30 and status = '0';[/code]
当范围查询使用> 或 < 时,走联合索引了,但是索引的长度为49,就说明范围查询右边的status字段是没有走索引的。- CREATE [UNIQUE | FULLTEXT] INDEX index_name ON table_name (index_col_name,...);
复制代码
<strong>当范围查询使用>= 或 = 或 或 = '17799990005'; select * from tb_user where phone >= '17799990015';[/code]
经过测试我们发现,相同的SQL语句,只是传入的字段值不同,最终的执行计划也完全不一样,就是因为MySQL在查询时,会评估使用索引的效率与走全表扫描的效率,如果走全表扫描更快,则放弃索引,走全表扫描。因为索引是用来索引少量数据的,如果通过索引查询返回大批量的数据,则还不如全表扫描来的快,此时索引就会失效。
接下来,我们再来看看is null 与 is not null 操作是否走索引。
执行如下两条语句:- SHOW INDEX FROM table_name;
复制代码
接下来,我们做一个操作将profession字段值全部更新为null。
然后,再次执行上述的两条SQL,查看SQL语句的执行计划。
最终我们看到,一摸一样的SQL语句,先后执行了两次,结果查询计划是不一样的,为什么会出现这种现象,这是和数据库的数据分布有关系。查询时MySQL会评估,走索引快,还是全表扫描快,如果全表扫描更快,则放弃索引走全表扫描。因此,is null、is not null是否走索引,得具体情况具体分析,并不是固定的。
5. SQL提示
目前tb_user表的数据情况如下:
索引情况如下:
把上述的 idx_user_age,idx_email 这两个之前测试使用过的索引直接删除。- DROP INDEX index_name ON table_name;
复制代码 A. 执行SQL:- create table tb_user(
- id int primary key auto_increment comment '主键',
- name varchar(50) not null comment '用户名',
- phone varchar(11) not null comment '手机号',
- email varchar(100) comment '邮箱',
- profession varchar(11) comment '专业',
- age tinyint unsigned comment '年龄',
- gender char(1) comment '性别 , 1: 男, 2: 女',
- status char(1) comment '状态',
- createtime datetime comment '创建时间'
- ) comment '系统用户表';
- INSERT INTO tb_user (name, phone, email, profession, age, gender, status, createtime) VALUES ('吕布', '17799990000', 'lvbu666@163.com', '软件工程', 23, '1', '6', '2001-02-02 00:00:00');
- INSERT INTO tb_user (name, phone, email, profession, age, gender, status, createtime) VALUES ('曹操', '17799990001', 'caocao666@qq.com', '通讯工程', 33, '1', '0', '2001-03-05 00:00:00');
- INSERT INTO tb_user (name, phone, email, profession, age, gender, status, createtime) VALUES ('赵云', '17799990002', '17799990@139.com', '英语', 34, '1', '2', '2002-03-02 00:00:00');
- INSERT INTO tb_user (name, phone, email, profession, age, gender, status, createtime) VALUES ('孙悟空', '17799990003', '17799990@sina.com', '工程造价', 54, '1', '0', '2001-07-02 00:00:00'); INSERT INTO tb_user (name, phone, email, profession, age, gender, status, createtime) VALUES ('花木兰', '17799990004', '19980729@sina.com', '软件工程', 23, '2', '1', '2001-04-22 00:00:00'); INSERT INTO tb_user (name, phone, email, profession, age, gender, status, createtime) VALUES ('大乔', '17799990005', 'daqiao666@sina.com', '舞蹈', 22, '2', '0', '2001-02-07 00:00:00');
- INSERT INTO tb_user (name, phone, email, profession, age, gender, status, createtime) VALUES ('露娜', '17799990006', 'luna_love@sina.com', '应用数学', 24, '2', '0', '2001-02-08 00:00:00');
- INSERT INTO tb_user (name, phone, email, profession, age, gender, status, createtime) VALUES ('程咬金', '17799990007', 'chengyaojin@163.com', '化工', 38, '1', '5', '2001-05-23 00:00:00'); INSERT INTO tb_user (name, phone, email, profession, age, gender, status, createtime) VALUES ('项羽', '17799990008', 'xiaoyu666@qq.com', '金属材料', 43, '1', '0', '2001-09-18 00:00:00');
- INSERT INTO tb_user (name, phone, email, profession, age, gender, status, createtime) VALUES ('白起', '17799990009', 'baiqi666@sina.com', '机械工程及其自动 化', 27, '1', '2', '2001-08-16 00:00:00');
- INSERT INTO tb_user (name, phone, email, profession, age, gender, status, createtime) VALUES ('韩信', '17799990010', 'hanxin520@163.com', '无机非金属材料工 程', 27, '1', '0', '2001-06-12 00:00:00');
- INSERT INTO tb_user (name, phone, email, profession, age, gender, status, createtime) VALUES ('荆轲', '17799990011', 'jingke123@163.com', '会计', 29, '1', '0', '2001-05-11 00:00:00');
- INSERT INTO tb_user (name, phone, email, profession, age, gender, status, createtime) VALUES ('兰陵王', '17799990012', 'lanlinwang666@126.com', '工程造价', 44, '1', '1', '2001-04-09 00:00:00');
- INSERT INTO tb_user (name, phone, email, profession, age, gender, status, createtime) VALUES ('狂铁', '17799990013', 'kuangtie@sina.com', '应用数学', 43, '1', '2', '2001-04-10 00:00:00');
- INSERT INTO tb_user (name, phone, email, profession, age, gender, status, createtime) VALUES ('貂蝉', '17799990014', '84958948374@qq.com', '软件工程', 40, '2', '3', '2001-02-12 00:00:00');
- INSERT INTO tb_user (name, phone, email, profession, age, gender, status, createtime) VALUES ('妲己', '17799990015', '2783238293@qq.com', '软件工程', 31, '2', '0', '2001-01-30 00:00:00');
- INSERT INTO tb_user (name, phone, email, profession, age, gender, status, createtime) VALUES ('芈月', '17799990016', 'xiaomin2001@sina.com', '工业经济', 35, '2', '0', '2000-05-03 00:00:00');
- INSERT INTO tb_user (name, phone, email, profession, age, gender, status, createtime) VALUES ('嬴政', '17799990017', '8839434342@qq.com', '化工', 38, '1', '1', '2001-08-08 00:00:00');
- INSERT INTO tb_user (name, phone, email, profession, age, gender, status, createtime) VALUES ('狄仁杰', '17799990018', 'jujiamlm8166@163.com', '国际贸易', 30, '1', '0', '2007-03-12 00:00:00');
- INSERT INTO tb_user (name, phone, email, profession, age, gender, status, createtime) VALUES ('安琪拉', '17799990019', 'jdodm1h@126.com', '城市规划', 51, '2', '0', '2001-08-15 00:00:00');
- INSERT INTO tb_user (name, phone, email, profession, age, gender, status, createtime) VALUES ('典韦', '17799990020', 'ycaunanjian@163.com', '城市规划', 52, '1', '2', '2000-04-12 00:00:00'); INSERT INTO tb_user (name, phone, email, profession, age, gender, status, createtime) VALUES ('廉颇', '17799990021', 'lianpo321@126.com', '土木工程', 19, '1', '3', '2002-07-18 00:00:00');
- INSERT INTO tb_user (name, phone, email, profession, age, gender, status, createtime) VALUES ('后羿', '17799990022', 'altycj2000@139.com', '城市园林', 20, '1', '0', '2002-03-10 00:00:00');
- INSERT INTO tb_user (name, phone, email, profession, age, gender, status, createtime) VALUES ('姜子牙', '17799990023', '37483844@qq.com', '工程造价', 29, '1', '4', '2003-05-26 00:00:00');
复制代码
查询走了联合索引。
B. 执行SQL,创建profession的单列索引:- CREATE INDEX idx_user_name ON tb_user(name);
复制代码
C.创建单列索引后,再次执行A中的SQL语句,查看执行计划,看看到底走哪个索引。
测试结果,我们可以看到,possible_keys中idx_user_pro_age_sta, idx_user_pro这两个索引都可能用到,最终MySQL选择了idx_user_pro_age_sta索引。这是MySQL自动选择的结果。
但是,我们可以借助于MySQL的SQL提示来自己指定使用哪个索引。
SQL提示,是优化数据库的一个重要手段,简单来说,就是在SQL语句中加入一些人为的提示来达到优化操作的目的。
1). use index:建议MySQL使用哪一个索引完成此次查询(仅仅是建议,mysql内部还会再次进行评估)。- CREATE UNIQUE INDEX idx_user_phone ON tb_user(phone);
复制代码
2). ignore index:忽略指定的索引。- CREATE INDEX idx_user_pro_age_sta ON tb_user(profession,age,status);
复制代码
3). force index:强制使用索引。- CREATE INDEX idx_email ON tb_user(email);
复制代码
6. 覆盖索引
*尽量使用覆盖索引,减少select 。覆盖索引是指查询使用了索引,并且需要返回的列,在该索引中已经全部能够找到。
接下来,我们来看一组SQL的执行计划,看看执行计划的差别,然后再来具体做一个分析。- -- session 是查看当前会话;
- -- global 是查询全局数据;
- SHOW GLOBAL STATUS LIKE 'Com_______';
复制代码
从上述的执行计划我们可以看到,这四条SQL语句的执行计划前面所有的指标都是一样的,看不出来差异。但是此时,我们主要关注的是后面的Extra,前面两条SQL的结果为 Using Where; Using Index;而后面两条SQL的结果为:Using index condition。
Extra含义Using where; Using Index查找使用了索引,但是需要的数据都在索引列中能找到,所以不需要回表查询数据。Using index condition查找使用了索引,但是需要回表查询数据。因为在tb_user表中有一个联合索引 idx_user_pro_age_sta,该索引关联了三个字段profession、age、status,而这个索引也是一个二级索引,所以叶子节点下面挂的是这一行的主键id。所以当我们查询返回的数据在 id、profession、age、status之中,则直接走二级索引直接返回数据了。如果超出这个范围,就需要拿到主键id,再去扫描聚集索引,再获取额外的数据了,这个过程就是回表。而我们如果一直使用select * 查询返回所有字段值,很容易就会造成回表查询(除非是根据主键查询,此时只会扫描聚集索引)。
SQL的执行过程:
A. 表结构及索引示意图:
id是主键,是一个聚集索引。name字段建立了普通索引,是一个二级索引(辅助索引)。
B. 执行SQL:select * from tb_user where id = 2;
根据id查询,直接走聚集索引查询,一次索引扫描,直接返回数据,性能高。
C. 执行SQL:select id, name from tb_user where name = 'Arm';
虽然是根据name字段查询,查询二级索引,但是由于查询返回的字段为id,name,在name的二级索引中,这两个值都是可以直接获取到的,因为覆盖索引,所以不需要回表查询,性能高。
D. 执行SQL:select id, name, gender from tb_user where name = 'Arm';
由于在name的二级索引中,不包含gender,所以需要两次索引扫描,也就是需要回表查询,性能相对比较差一点。
问题1:一张表,有四个字段(id, username, password, status),由于数据量大,需要对以下SQL语句进行优化,该如何进行才是最优方案:
select id, username, password from tb_user where username = 'itcast';
答案:针对于username,password建立联合索引,sql为 create index idx_user_name_pass on tb_user(username, password);
这样可以避免上述的SQL语句,在查询过程中,出现回表查询。
7. 前缀索引
当字段类型为字符串(varchar,text,longtext等)时,有时候需要索引很长的字符串,这会让索引变得很大,查询时,浪费大量的磁盘IO,影响查询效率。此时可以只将字符串的一部分前缀建立索引,这样可以大大节约索引空间,从而提高索引效率。
(1). 语法
- show variables like 'slow_query_log';
复制代码 案例1:为tb_user表的email字段建立长度为5的前缀索引。- # 开启MySQL慢日志查询开关
- slow_query_log=1
- # 设置慢日志的时间为2秒,SQL语句执行时间超过2秒,就会视为慢查询,记录慢查询日志
- long_query_time=2
复制代码
(2). 前缀长度
可以根据索引的选择性来决定,而选择性是指不重复的索引值(基数)和数据表的记录总数的比值,索引选择性越高则查询效率越高,唯一索引的选择性是1,这是最好的索引选择性,性能也是最好的。(3). 前缀索引的查询流程
8. 单列索引与联合索引
单列索引:即一个索引只包含单个列。
联合索引:即一个索引包含了多个列。
我们先来看看tb_user表中目前的索引情况:
在查询出来的索引中,既有单列索引,又有联合索引。
接下来,我们来执行一条SQL语句,看看其执行计划:
通过上述执行计划我们可以看出来,在and连接的两个字段phone、name上都是有单列索引的,但是最终mysql只会选择一个索引,也就是说,只能走一个字段的索引,此时是会回表查询的。
紧接着,我们再来创建一个phone和name字段的联合索引来查询一下执行计划。- select * from tb_user; -- 这条SQL执行效率比较高, 执行耗时 0.00sec
- select count(*) from tb_sku; -- 由于tb_sku表中, 预先存入了1000w的记录, count一次,耗时 13.35sec
复制代码
此时查询时,就走了联合索引,而在联合索引中包含了phone、name的信息,在叶子节点下挂的是对应的主键id,所以查询是无需回表查询的。
如果查询使用的是联合索引,具体的结构示意图如下:
七. 索引设计原则
1. 针对于数据量较大且查询比较频繁的表建立索引。
2. 针对于常作为查询条件(where)、排序(order by)、分组(group by)操作的字段建立索引。
3. 尽量选择区分度高的列作为索引,尽量建立唯一索引,区分度越高,使用索引的效率越高。
4. 如果是字符串类型的字符,字段的长度较大,可以针对于字段的特点,建立前缀索引。
5. 尽量使用联合索引,减少单列索引,查询时,联合索引很多时候可以覆盖索引,节省存储空间,避免回表,提高查询效率。
6. 要控制索引的数量,索引并不是多多益善,索引越多,维护索引结构的代价也就越大,会影响增删改的效率。
7. 如果索引列不能存储NULL值,请在创建表时使用NOT NULL约束它。当优化器知道每列是否包含NULL值时,它可以更好地确定哪个索引最有效的用于查询。
更多mysql学习请关注微信公众号”云哥技术yun3k”,回复”mysql学习”,免费领取mysql全套学习资料。
来源:https://www.cnblogs.com/yun3k/p/17558461.html
免责声明:由于采集信息均来自互联网,如果侵犯了您的权益,请联系我们【E-Mail:cb@itdo.tech】 我们会及时删除侵权内容,谢谢合作! |
本帖子中包含更多资源
您需要 登录 才可以下载或查看,没有账号?立即注册
x
|