翼度科技»论坛 编程开发 python 查看内容

【pandas小技巧】--拆分列

6

主题

6

帖子

18

积分

新手上路

Rank: 1

积分
18
拆分列是pandas中常用的一种数据操作,它可以将一个包含多个值的列按照指定的规则拆分成多个新列,方便进行后续的分析和处理。
拆分列的使用场景比较广泛,以下是一些常见的应用场景:

  • 处理日期数据:在日期数据中,经常会将年、月、日等信息合并成一列,通过拆分列可以将其拆分成多个新列,方便进行时间序列分析。
  • 处理地址数据:类似于日期数据,在地址数据中也经常会将省、市、区等信息合并成一列,通过拆分列可以将其拆分成多个新列,有利于进行地理位置分析。
  • 处理姓名数据:在一些数据集中,姓名通常会以“姓”、“名”两列呈现,通过拆分列可以将其分别提取出来,方便进行人口统计学分析。
  • 处理文本数据:在一些文本数据中,可能存在多个关键词同时出现的情况,通过拆分列可以将这些关键词拆分成多个新列,方便进行文本分类或聚类分析。
本篇简要介绍下pandas拆分列的常用方法。
1. 拆出列中部分信息

如下测试数据:
  1. import pandas as pd
  2. df = pd.DataFrame(
  3.     {
  4.         "姓名": ["张 三", "李 四", "王 五"],
  5.         "地址": [
  6.             "江苏省,南京市,建邺区",
  7.             "浙江省,杭州市,余杭区",
  8.             "安徽省,合肥市,庐阳区",
  9.         ],
  10.     }
  11. )
  12. df
复制代码

提取城市信息:
  1. df["城市"] = df["地址"].str.split(",",
  2.                              expand=True)[1]
  3. df["姓"] = df["姓名"].str.split(" ",
  4.                              expand=True)[0]
  5. df
复制代码

注意要加上 expand=True 参数。
因为:

  • expand=False:split后的值是Series
  • expand=True:split后的值是DataFrame
2. 拆分成多列

拆分成多列有两种方式:
第一种:
  1. df[["省", "市", "区"]] =
  2.         df["地址"].str.split(",", expand=True)
  3. df
复制代码

第二种:这种方式不需要设置 expand=True
  1. df["省"], df["市"], df["区"] =
  2.         zip(*df["地址"].str.split(","))
  3. df
复制代码

3. 使用正则拆分

除了直接按照字符来split列中的数据,也可以用正则表达式来split。
比如如下的场景,需要对客户的手机号进行保密,可以通过正则表达式来截断手机号,只保留最后四位。
  1. df = pd.DataFrame(
  2.     {
  3.         "单号": ["0001", "0002", "0003"],
  4.         "手机号": [
  5.             "13900000001",
  6.             "18922233344",
  7.             "15955566677",
  8.         ],
  9.     }
  10. )
  11. df["截断手机号"] = df["手机号"].str.split(
  12.     r"\d{7}",
  13.     expand=True,
  14.     regex=True,
  15. )[1]
  16. df
复制代码

通过正则表达式,可以更加灵活的拆分列的数据。

来源:https://www.cnblogs.com/wang_yb/p/17602491.html
免责声明:由于采集信息均来自互联网,如果侵犯了您的权益,请联系我们【E-Mail:cb@itdo.tech】 我们会及时删除侵权内容,谢谢合作!

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有账号?立即注册

x

举报 回复 使用道具