|
常用的包
- import torch
- import torchvision
- from torch import nn
- from torch.utils.data import DataLoader
- from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
- from torch.utils.tensorboard import SummaryWriter
复制代码 Pytorch
pytorch安装
准备环境
- 安装Ancona工具
- 安装python语言
- 安装pycharm工具
以上工作安装完成后,开始真正的pytorch安装之旅,别担心,很容易
1.打开Ancona Prompt创建一个pytorch新环境- conda create -n pytorch python=版本号比如3.11
复制代码 后面步骤都是y同意安装
2.激活环境
同样在Ancona Prompt中继续输入如下指令
3.去pytorch官网找到下载pytorch指令,根据个人配置进行选择
- window下一般选择Conda
- Linux下一般选择Pip
这里要区分自己电脑是否含有独立显卡,没有的选择cpu模式就行。
如果有独立显卡,那么去NVIDIA官网查看自己适合什么版本型号进行选择即可。
如果有独立显卡,在Ancona Prompt中输入如下指令,返回True即可确认安装成功。
- torch.cuda.is_available()
复制代码 如果没有cpu我们通过pycharm来进行判断,首先创建一个pytorch工程,如下所示:
- import torch
- print(torch.cuda.is_available())
- print(torch.backends.cudnn.is_available())
- print(torch.cuda_version)
- print(torch.backends.cudnn.version())
- print(torch.__version__)
复制代码是不是发现输出false, false, None, None,是不是以为错了。不,那是因为我们安装的是CPU版本的,压根就没得cuda,cudnn这个东西。我们只要检测python版本的torch(PyTorch)在就行。
ok!恭喜你成功完成安装pytroch!接下来开启你的学习之路吧!
引言:python中的两大法宝函数
- # 查看torch里面有什么
- for i in range(len(dir(torch))):
- print(f"{dir(torch)[i]}")
复制代码
pytorch加载数据初认识
- import import torch
- from torch.utils.data import Dataset
复制代码
Dataset代码实战
- from torch.utils.data import Dataset
- from PIL import Image
- import os
- class MyData(Dataset):
- def __init__(self, root_dir, label_dir):
- self.root_dir = root_dir
- self.label_dir = label_dir
- self.path = os.path.join(self.root_dir, self.label_dir) # 根路径和最后的路径进行拼接
- self.img_path = os.listdir(self.path) # 路径地址img_path[0] 就是第一张地址
- def __getitem__(self, idx):
- """
- 读取每个照片
- :param idx:
- :return:
- """
- img_name = self.img_path[idx]
- img_item_path = os.path.join(self.root_dir, self.label_dir, img_name)
- img = Image.open(img_item_path)
- label = self.label_dir
- return img, label
- def __len__(self):
- """
- 查看图片个数,即数据集个数
- :return:
- """
- return len(self.img_path)
- # img_path = "E:\\Project\\Code_Python\\Learn_pytorch\\learn_pytorch\\dataset\\training_set\\cats\\cat.1.jpg"
- # img = Image.open(img_path)
- # print(img)
- # img.show()
- root_dir = "dataset/training_set"
- cats_label_dir = "cats"
- dogs_label_dir = "dogs"
- cats_dataset = MyData(root_dir, cats_label_dir)
- dogs_dataset = MyData(root_dir, dogs_label_dir)
- img1, label1 = cats_dataset[1]
- img2, label2 = dogs_dataset[1]
- # img1.show()
- # img2.show()
- train_dataset = cats_dataset + dogs_dataset # 合并数据集
- print(len(train_dataset))
- print(len(cats_dataset))
- print(len(dogs_dataset))
复制代码 TensorBoard的使用(一)
- from torch.utils.tensorboard import SummaryWriter
- writer = SummaryWriter("logs") # 事件文件存储地址
- # writer.add_image()
- # y = x
- for i in range(100):
- writer.add_scalar("y=2x", 2*i, i) # 标量的意思 参数2*i 是x轴 i是y轴
- writer.close()
复制代码- tensorboard --logdir="logs" --port=6007(这里是指定端口号,也可以不写--port,默认6006)
复制代码
- 利用Opencv读取图片,获得numpy型图片数据
- import numpy as np
- from torch.utils.tensorboard import SummaryWriter
- import cv2
- writer = SummaryWriter("logs") # 事件文件存储地址
- img_array = cv2.imread("./dataset/training_set/cats/cat.2.jpg")
- # print(img_array.shape)
- writer.add_image("test",img_array,2,dataformats='HWC')
- # y = x
- for i in range(100):
- writer.add_scalar("y=2x", 2 * i, i) # 标量的意思
- writer.close()
复制代码
Transforms使用
- ![Snipaste_2023-11-01_10-52-09](./pytorch截图/Snipaste_2023-11-01_10-52-09.png)from torchvision import transforms
- from PIL import Image
- # python当中的用法
- # tensor数据类型
- # 通过transforms.ToTensor去解决两个问题
- # 1.transforms如何使用(pyhton)
- # 2.为什么需要Tensor数据类型:因为里面包装了神经网络模型训练的数据类型
- # 绝对路径 E:\Project\Code_Python\Learn_pytorch\learn_pytorch\dataset\training_set\cats\cat.6.jpg
- # 相对路径 dataset/training_set/cats/cat.6.jpg
- img_path = "dataset/training_set/cats/cat.6.jpg"
- img = Image.open(img_path)
- # 1.transforms如何使用(pyhton)
- tensor_trans = transforms.ToTensor()
- tensor_img = tensor_trans(img)
- print(tensor_img.shape)
复制代码
常见的Transforms
- from PIL import Image
- from torchvision import transforms
- from torch.utils.tensorboard import SummaryWriter
- writer = SummaryWriter("logs")
- img = Image.open("dataset/training_set/cats/cat.11.jpg")
- print(img)
- # ToTensor的使用
- trans_totensor = transforms.ToTensor()
- img_tensor = trans_totensor(img)
- writer.add_image("ToTensor", img_tensor)
- # Normalize
- print(img_tensor[0][0][0])
- trans_norm = transforms.Normalize([1, 1, 1], [1, 1, 1])
- img_norm = trans_norm(img_tensor)
- print(img_norm[0][0][0])
- writer.add_image("Normalize", img_norm, 0)
- # Resize
- print(img.size)
- trans_resize = transforms.Resize((512, 512))
- # img PIL -> resize -> img_resize PIL
- img_resize = trans_resize(img)
- # img_resize PIL -> totensor -> img_resize tensor
- img_resize = trans_totensor(img_resize)
- # print(img_resize)
- writer.add_image("Resize", img_resize, 1)
- # Compose - resize - 2
- trans_resize_2 = transforms.Resize(144)
- # PIL -> PIL -> tensor数据类型
- trans_compose = transforms.Compose([trans_resize_2, trans_totensor])
- img_resize_2 = trans_compose(img)
- writer.add_image("Resize_Compose", img_resize_2, 2)
- writer.close()
复制代码 torchvision中的数据集使用
- import torchvision
- from torch.utils.tensorboard import SummaryWriter
- dataset_transforms = torchvision.transforms.Compose([
- torchvision.transforms.ToTensor()
- ])
- # 下载数据集
- train_set = torchvision.datasets.CIFAR10(root="./dataset", train=True, transform=dataset_transforms, download=True)
- test_set = torchvision.datasets.CIFAR10(root="./dataset", train=False, transform=dataset_transforms, download=True)
- print(test_set[0])
- print(test_set.classes)
- img, target = test_set[0]
- print(img)
- print(target)
- print(test_set.classes[target])
- # img.show()
- writer = SummaryWriter("p10")
- for i in range(10):
- img, target = test_set[i]
- writer.add_image("test_set", img, i)
- writer.close()
复制代码
DataLoad的使用
- import torchvision
- from torch.utils.data import DataLoader
- from torch.utils.tensorboard import SummaryWriter
- # 准备的测试数据集
- test_data = torchvision.datasets.CIFAR10("./dataset", train=False, transform=torchvision.transforms.ToTensor())
- test_loader = DataLoader(dataset=test_data, batch_size=64, shuffle=True, num_workers=0, drop_last=False)
- # 这里数据集是之前官网下载下来的
- # 测试数据集中第一张图片及target
- img, target = test_data[0]
- print(img.shape)
- print(target)
- writer = SummaryWriter("dataloader")
- step = 0
- for data in test_loader:
- imgs, targets = data
- # print(imgs.shape)
- # print(targets)
- writer.add_images("test_data", imgs, step)
- step = step + 1
- writer.close()
复制代码
- 最后一次数据不满足64张 于是将参数设置drop_last=True
- import torchvision
- from torch.utils.data import DataLoader
- from torch.utils.tensorboard import SummaryWriter
- # 准备的测试数据集
- test_data = torchvision.datasets.CIFAR10("./dataset", train=False, transform=torchvision.transforms.ToTensor())
- test_loader = DataLoader(dataset=test_data, batch_size=64, shuffle=True, num_workers=0, drop_last=True)
- # 这里数据集是之前官网下载下来的
- # 测试数据集中第一张图片及target
- img, target = test_data[0]
- print(img.shape)
- print(target)
- writer = SummaryWriter("dataloader_drop_last")
- step = 0
- for data in test_loader:
- imgs, targets = data
- # print(imgs.shape)
- # print(targets)
- writer.add_images("test_data", imgs, step)
- step = step + 1
- writer.close()
复制代码
- shuffle 使用
- True 两边图片选取不一样
- False两边图片选取一样
- import torchvision
- from torch.utils.data import DataLoader
- from torch.utils.tensorboard import SummaryWriter
- # 准备的测试数据集
- test_data = torchvision.datasets.CIFAR10("./dataset", train=False, transform=torchvision.transforms.ToTensor())
- test_loader = DataLoader(dataset=test_data, batch_size=64, shuffle=True, num_workers=0, drop_last=True)
- # 这里数据集是之前官网下载下来的
- # 测试数据集中第一张图片及target
- img, target = test_data[0]
- print(img.shape)
- print(target)
- writer = SummaryWriter("dataloader")
- for epoch in range(2):
- step = 0
- for data in test_loader:
- imgs, targets = data
- # print(imgs.shape)
- # print(targets)
- writer.add_images("Eopch: {}".format(epoch), imgs, step)
- step = step + 1
- writer.close()
复制代码
神经网络的基本骨架
- import torch
- from torch import nn
- class ConvModel(nn.Module):
- def __init__(self, *args, **kwargs) -> None:
- super().__init__(*args, **kwargs)
- def forward(self, input):
- output = input + 1
- return output
- convmodel = ConvModel()
- x = torch.tensor(1.0)
- output = convmodel(x)
- print(output)
复制代码 卷积操作
- import torch
- import torch.nn.functional as F
- # 卷积输入
- input = torch.tensor([[1, 2, 0, 3, 1],
- [0, 1, 2, 3, 1],
- [1, 2, 1, 0, 0],
- [5, 2, 3, 1, 1],
- [2, 1, 0, 1, 1]])
- # 卷积核
- kernel = torch.tensor([[1, 2, 1],
- [0, 1, 0],
- [2, 1, 0]])
- # 进行尺寸转换
- input = torch.reshape(input, (1, 1, 5, 5))
- kernel = torch.reshape(kernel, (1, 1, 3, 3))
- print(input.shape)
- print(kernel.shape)
- output = F.conv2d(input, kernel, stride=1)
- print(output)
- output2 = F.conv2d(input, kernel, stride=2)
- print(output2)
复制代码
- # padding 默认填充值是0
- output3 = F.conv2d(input, kernel, stride=1, padding=1)
- print(output3)
复制代码结果:
tensor([[[[ 1, 3, 4, 10, 8],
[ 5, 10, 12, 12, 6],
[ 7, 18, 16, 16, 8],
[11, 13, 9, 3, 4],
[14, 13, 9, 7, 4]]]])
神经网络-卷积层
- import torch
- import torchvision
- from torch.utils.data import DataLoader
- from torch import nn
- from torch.nn import Conv2d
- from torch.utils.tensorboard import SummaryWriter
- dataset = torchvision.datasets.CIFAR10("./dataset", train=False, transform=torchvision.transforms.ToTensor(),
- download=True)
- dataloader = DataLoader(dataset, batch_size=64)
- class NN_Conv2d(nn.Module):
- def __init__(self):
- super().__init__()
- self.conv1 = Conv2d(in_channels=3, out_channels=6, kernel_size=3, stride=1, padding=0)
- def forward(self, x):
- x = self.conv1(x)
- return x
- nn_conv2d = NN_Conv2d()
- # print(nn_conv2d)
- writer = SummaryWriter("./logs")
- step = 0
- for data in dataloader:
- imgs, targets = data
- output = nn_conv2d(imgs)
- print(f"imgs: {imgs.shape}")
- print(f"output: {output.shape}")
- # 输入的大小 torch.Size([64,3,32,32])
- writer.add_images("input", imgs, step)
- # 卷积后输出的大小 torch.Size([64,,6,30,30) --> [xxx,3,30,30]
- output = torch.reshape(output, (-1, 3, 30, 30))
- writer.add_images("output", output, step)
- step += 1
复制代码- # import numpy as np
- import torch
- import torchvision
- from torch import nn
- from torch.nn import Conv2d
- from torch.utils.tensorboard import SummaryWriter
- import cv2
- from torchvision import transforms
- # 创建卷积模型
- class NN_Conv2d(nn.Module):
- def __init__(self):
- super().__init__()
- self.conv1 = Conv2d(in_channels=3, out_channels=6, kernel_size=3, stride=1, padding=1)
- def forward(self, x):
- x = self.conv1(x)
- return x
- nn_conv2d = NN_Conv2d()
- writer = SummaryWriter('logs_test')
- input_img = cv2.imread("dataset/ice.jpg")
- # 转化为tensor类型
- trans_tensor = transforms.ToTensor()
- input_img = trans_tensor(input_img)
- # 设置input输入大小
- input_img = torch.reshape(input_img, (-1, 3, 1312, 2100))
- print(input_img.shape)
- writer.add_images("input_img", input_img, 1)
- # 进行卷积输出
- output = nn_conv2d(input_img)
- output = torch.reshape(output, (-1, 3, 1312, 2100))
- print(output.shape)
- writer.add_images('output_test', output, 1)
- writer.close()
复制代码
神经网络-最大池化
- import torch
- from torch import nn
- from torch.nn import MaxPool2d
- input_img = torch.tensor([[1, 2, 0, 3, 1],
- [0, 1, 2, 3, 1],
- [1, 2, 1, 0, 0],
- [5, 2, 3, 1, 1],
- [2, 1, 0, 1, 1]], dtype=torch.float32)
- input_img = torch.reshape(input_img, (-1, 1, 5, 5))
- print(input_img.shape)
- # 简单的搭建卷积神经网络
- class Nn_Conv_Maxpool(nn.Module):
- def __init__(self):
- super().__init__()
- self.maxpool1 = MaxPool2d(kernel_size=3, ceil_mode=True)
- def forward(self, input_img):
- output = self.maxpool1(input_img)
- return output
- nn_conv_maxpool = Nn_Conv_Maxpool()
- output = nn_conv_maxpool(input_img)
- print(output)
复制代码- import torch
- import torchvision
- from torch import nn
- from torch.nn import MaxPool2d
- from torch.utils.data import DataLoader
- from torch.utils.tensorboard import SummaryWriter
- dataset = torchvision.datasets.CIFAR10('./dataset', train=False, download=True,
- transform=torchvision.transforms.ToTensor())
- dataloader = DataLoader(dataset, batch_size=64)
- # 简单的搭建卷积神经网络
- class Nn_Conv_Maxpool(nn.Module):
- def __init__(self):
- super().__init__()
- self.maxpool1 = MaxPool2d(kernel_size=3, ceil_mode=True)
- def forward(self, input_img):
- output = self.maxpool1(input_img)
- return output
- nn_conv_maxpool = Nn_Conv_Maxpool()
- writer = SummaryWriter('logs_maxpool')
- step = 0
- for data in dataloader:
- imgs, targets = data
- writer.add_images('input', imgs, step)
- output = nn_conv_maxpool(imgs)
- writer.add_images('output', output, step)
- step += 1
- writer.close()
复制代码
神经网络-非线性激活
- import torch
- from torch import nn
- from torch.nn import ReLU
- input = torch.tensor([[1, -0.5],
- [-1, 3]])
- input = torch.reshape(input, (-1, 1, 2, 2))
- print(input.shape)
- class Nn_Network_Relu(nn.Module):
- def __init__(self):
- super().__init__()
- self.relu1 = ReLU()
- def forward(self, input):
- output = self.relu1(input)
- return output
- nn_relu = Nn_Network_Relu()
- output = nn_relu(input)
- print(outputz)
复制代码- import torch
- import torchvision
- from torch import nn
- from torch.nn import ReLU
- from torch.nn import Sigmoid
- from torch.utils.data import DataLoader
- from torch.utils.tensorboard import SummaryWriter
- input = torch.tensor([[1, -0.5],
- [-1, 3]])
- input = torch.reshape(input, (-1, 1, 2, 2))
- print(input.shape)
- dataset = torchvision.datasets.CIFAR10('./dataset', train=False, download=True,
- transform=torchvision.transforms.ToTensor())
- dataloader = DataLoader(dataset, batch_size=64)
- class Nn_Network_Relu(nn.Module):
- def __init__(self):
- super().__init__()
- self.relu1 = ReLU()
- self.sigmoid1 = Sigmoid()
- def forward(self, input):
- output = self.sigmoid1(input)
- return output
- nn_relu = Nn_Network_Relu()
- nn_sigmoid = Nn_Network_Relu()
- writer = SummaryWriter('logs_sigmoid')
- step = 0
- for data in dataloader:
- imgs, targets = data
- writer.add_images("input_imgs", imgs, step)
- output = nn_sigmoid(imgs)
- writer.add_images("output", output, step)
- step += 1
- writer.close()
复制代码
神经网络-线性层及其他层
- 线性层(linear layer)通常也被称为全连接层(fully connected layer)。在深度学习模型中,线性层和全连接层指的是同一种类型的神经网络层,它将输入数据与权重相乘并加上偏置,然后通过一个非线性激活函数输出结果。可以实现特征提取、降维等功能。
- 以VGG16网络模型为例,全连接层共有3层,分别是4096-4096-1000,这里的1000为ImageNet中数据集类别的数量。
- import torch
- import torchvision
- from torch.utils.data import DataLoader
- from torch import nn
- from torch.nn import Linear
- dataset = torchvision.datasets.CIFAR10('./dataset', train=False, transform=torchvision.transforms.ToTensor(),
- download=True)
- dataloader = DataLoader(dataset, batch_size=64)
- class Nn_LinearModel(nn.Module):
- def __init__(self):
- super().__init__()
- self.linear1 = Linear(196608, 10)
- def forward(self, input):
- output = self.linear1(input)
- return output
- nn_linearmodel = Nn_LinearModel()
- for data in dataloader:
- imgs, targets = data
- print(imgs.shape)
- output = torch.flatten(imgs)
- print(output.shape)
- output = nn_linearmodel(output)
- print(output.shape)
复制代码
- torch.flatten: 将输入(Tensor)展平为一维张量
- batch_size 一般不展开,以MNIST数据集的一个 batch 为例将其依次转化为例:
[64, 1, 28, 28] -> [64, 784] -> [64, 128]
神经网络-实践以及Sequential
- import torch
- from torch import nn
- from torch.nn import Conv2d, MaxPool2d, Flatten, Linear
- class Nn_SeqModel(nn.Module):
- def __init__(self):
- super().__init__()
- self.conv1 = Conv2d(3, 32, 5, padding=2)
- self.maxpool1 = MaxPool2d(2)
- self.conv2 = Conv2d(32, 32, 5, padding=2)
- self.maxpool2 = MaxPool2d(2)
- self.conv3 = Conv2d(32, 64, 5, padding=2)
- self.maxpool3 = MaxPool2d(2)
- self.flatten = Flatten()
- self.linear1 = Linear(1024, 64)
- self.linear2 = Linear(64, 10)
- def forward(self, x):
- x = self.conv1(x)
- x = self.maxpool1(x)
- x = self.conv2(x)
- x = self.maxpool2(x)
- x = self.conv3(x)
- x = self.maxpool2(x)
- x = self.flatten(x)
- x = self.linear1(x)
- x = self.linear2(x)
- return x
- if __name__ == '__main__':
- nn_seqmodel = Nn_SeqModel()
- print(nn_seqmodel)
- # 对网络模型进行检验
- input = torch.ones((64, 3, 32, 32))
- output = nn_seqmodel(input)
- print(output.shape)
复制代码Nn_SeqModel(
(conv1): Conv2d(3, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(maxpool1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(conv2): Conv2d(32, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(maxpool2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(conv3): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(maxpool3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(flatten): Flatten(start_dim=1, end_dim=-1)
(linear1): Linear(in_features=1024, out_features=64, bias=True)
(linear2): Linear(in_features=64, out_features=10, bias=True)
)
torch.Size([64, 10])
- import torch
- from torch import nn
- from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
- class Nn_SeqModel(nn.Module):
- def __init__(self):
- super().__init__()
- # self.conv1 = Conv2d(3, 32, 5, padding=2)
- # self.maxpool1 = MaxPool2d(2)
- # self.conv2 = Conv2d(32, 32, 5, padding=2)
- # self.maxpool2 = MaxPool2d(2)
- # self.conv3 = Conv2d(32, 64, 5, padding=2)
- # self.maxpool3 = MaxPool2d(2)
- # self.flatten = Flatten()
- # self.linear1 = Linear(1024, 64)
- # self.linear2 = Linear(64, 10)
- self.model1 = Sequential(
- Conv2d(3, 32, 5, padding=2),
- MaxPool2d(2),
- Conv2d(32, 32, 5, padding=2),
- MaxPool2d(2),
- Conv2d(32, 64, 5, padding=2),
- MaxPool2d(2),
- Flatten(),
- Linear(1024, 64),
- Linear(64, 10)
- )
- def forward(self, x):
- # x = self.conv1(x)
- # x = self.maxpool1(x)
- # x = self.conv2(x)
- # x = self.maxpool2(x)
- # x = self.conv3(x)
- # x = self.maxpool2(x)
- # x = self.flatten(x)
- # x = self.linear1(x)
- # x = self.linear2(x)
- x = self.model1(x)
- return x
- if __name__ == '__main__':
- nn_seqmodel = Nn_SeqModel()
- print(nn_seqmodel)
- # 对网络模型进行检验
- input = torch.ones((64, 3, 32, 32))
- output = nn_seqmodel(input)
- print(output.shape)
复制代码Nn_SeqModel(
(model1): Sequential(
(0): Conv2d(3, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(2): Conv2d(32, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(4): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(5): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(6): Flatten(start_dim=1, end_dim=-1)
(7): Linear(in_features=1024, out_features=64, bias=True)
(8): Linear(in_features=64, out_features=10, bias=True)
)
)
torch.Size([64, 10])
- if __name__ == '__main__':
- nn_seqmodel = Nn_SeqModel()
- print(nn_seqmodel)
- # 对网络模型进行检验
- input = torch.ones((64, 3, 32, 32))
- output = nn_seqmodel(input)
- print(output.shape)
- # 查看网络结构
- writer = SummaryWriter('./logs_seq')
- writer.add_graph(nn_seqmodel, input)
- writer.close()
复制代码
损失函数与反向传播
- import torch
- from torch.nn import L1Loss
- inputs = torch.tensor([1, 2, 3], dtype=torch.float32)
- targets = torch.tensor([1, 2, 5], dtype=torch.float32)
- inputs = torch.reshape(inputs, (1, 1, 1, 3))
- targets = torch.reshape(targets, (1, 1, 1, 3))
- loss = L1Loss() # reduction='sum'
- result = loss(inputs, targets)
- print(result)
复制代码tensor(0.6667)
- x = torch.tensor([0.1, 0.2, 0.3])
- y = torch.tensor([1])
- x = torch.reshape(x, (1, 3))
- loss_cross = nn.CrossEntropyLoss()
- result_cross = loss_cross(x, y)
- print(f"The result_cross of CrossEntropyLoss: {result_cross}")
复制代码The result_cross of CrossEntropyLoss: 1.1019428968429565
- import torch
- import torchvision
- from torch import nn
- from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
- from torch.utils.tensorboard import SummaryWriter
- from torch.utils.data import DataLoader
- dataset = torchvision.datasets.CIFAR10("./dataset", train=False, transform=torchvision.transforms.ToTensor(),
- download=True)
- dataloader = DataLoader(dataset, batch_size=1)
- class Nn_LossNetworkModel(nn.Module):
- def __init__(self):
- super().__init__()
- self.model1 = Sequential(
- Conv2d(3, 32, 5, padding=2),
- MaxPool2d(2),
- Conv2d(32, 32, 5, padding=2),
- MaxPool2d(2),
- Conv2d(32, 64, 5, padding=2),
- MaxPool2d(2),
- Flatten(),
- Linear(1024, 64),
- Linear(64, 10)
- )
- def forward(self, x):
- x = self.model1(x)
- return x
- loss = nn.CrossEntropyLoss()
- if __name__ == '__main__':
- nn_lossmodel = Nn_LossNetworkModel()
- for data in dataloader:
- imgs, targets = data
- outputs = nn_lossmodel(imgs)
- result_loss = loss(outputs, targets)
- print(f"the result_loss is : {result_loss}")
复制代码
- 梯度下降 进行反向传播
- debug测试查看 grad
- if __name__ == '__main__':
- nn_lossmodel = Nn_LossNetworkModel()
- for data in dataloader:
- imgs, targets = data
- outputs = nn_lossmodel(imgs)
- result_loss = loss(outputs, targets)
- # print(f"the result_loss is : {result_loss}")
- result_loss.backward()
- print("ok")
复制代码 优化器
- import torch
- import torchvision
- from torch import nn
- from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
- from torch.utils.tensorboard import SummaryWriter
- from torch.utils.data import DataLoader
- # 加载数据集转换为tensor类型
- dataset = torchvision.datasets.CIFAR10("./dataset", train=False, transform=torchvision.transforms.ToTensor(),
- download=True)
- # 使用DataLoader将数据集进行加载
- dataloader = DataLoader(dataset, batch_size=1)
- # 创建网络
- class Nn_LossNetworkModel(nn.Module):
- def __init__(self):
- super().__init__()
- self.model1 = Sequential(
- Conv2d(3, 32, 5, padding=2),
- MaxPool2d(2),
- Conv2d(32, 32, 5, padding=2),
- MaxPool2d(2),
- Conv2d(32, 64, 5, padding=2),
- MaxPool2d(2),
- Flatten(),
- Linear(1024, 64),
- Linear(64, 10)
- )
- def forward(self, x):
- x = self.model1(x)
- return x
- if __name__ == '__main__':
- loss = nn.CrossEntropyLoss()
- nn_lossmodel = Nn_LossNetworkModel()
- optim = torch.optim.SGD(nn_lossmodel.parameters(), lr=0.01)
- for data in dataloader:
- imgs, targets = data
- outputs = nn_lossmodel(imgs)
- result_loss = loss(outputs, targets)
- optim.zero_grad()
- result_loss.backward()
- optim.step()
复制代码- if __name__ == '__main__':
- loss = nn.CrossEntropyLoss()
- nn_lossmodel = Nn_LossNetworkModel()
- optim = torch.optim.SGD(nn_lossmodel.parameters(), lr=0.01)
- for epoch in range(20):
- running_loss = 0.0
- for data in dataloader:
- imgs, targets = data
- outputs = nn_lossmodel(imgs)
- result_loss = loss(outputs, targets)
- optim.zero_grad()
- result_loss.backward()
- optim.step()
- running_loss = running_loss + result_loss
- print("running_loss: ", running_loss)
复制代码Files already downloaded and verified
running_loss: tensor(18788.4355, grad_fn=)
running_loss: tensor(16221.9961, grad_fn=)
........
现有网络模型的使用以及修改
- import torchvision
- import torch
- from torch import nn
- # train_data = torchvision.datasets.ImageNet("./data_image_net", split="train",
- # transform=torchvision.transforms.ToTensor(), download=True)
- vgg16_false = torchvision.models.vgg16(pretrained=False)
- vgg16_true = torchvision.models.vgg16(pretrained=True)
- print('ok')
- print(vgg16_true)
- train_data = torchvision.datasets.CIFAR10('./dataset', train=True, transform=torchvision.transforms.ToTensor(),
- download=True)
- # vgg16_true.add_module('add_linear', nn.Linear(1000, 10))
- vgg16_true.classifier.add_module('add_linear', nn.Linear(1000, 10))
- print(vgg16_true)
- print(vgg16_false)
- vgg16_false.classifier[6] = nn.Linear(4096, 10)
- print(vgg16_false)
复制代码 网络模型的保存与读取
- import torch
- import torchvision
- from torch import nn
- vgg16 = torchvision.models.vgg16(pretrained=False)
- # 保存方式1: 模型结构+模型参数
- torch.save(vgg16, "vgg16_method1.pth")
- # 保存方式2: 模型参数(官方推荐)
- torch.save(vgg16.state_dict(), "vgg16_method2.pth")
- # 陷阱
- class Nn_Model(nn.Module):
- def __init__(self):
- super().__init__()
- self.conv1 = nn.Conv2d(3, 64, 3)
- def forward(self, x):
- x = self.conv1(x)
- return x
- nn_model = Nn_Model()
- torch.save(nn_model, "nnModel_method1.pth")
复制代码- import torch
- import torchvision
- from torch import nn
- from p19_model_save import *
- # 加载方式1 ---> 对应保存方式1 ,加载模型
- model = torch.load("vgg16_method1.pth")
- # print(model)
- # 加载方式2
- model2 = torch.load("vgg16_method2.pth")
- print(model2)
- # 方式2 的回复网络模型结构
- vgg16 = torchvision.models.vgg16(pretrained=False)
- vgg16.load_state_dict(torch.load("vgg16_method2.pth"))
- print(vgg16)
- # 陷阱1
- # class Nn_Model(nn.Module):
- # def __init__(self):
- # super().__init__()
- # self.conv1 = nn.Conv2d(3, 64, 3)
- #
- # def forward(self, x):
- # x = self.conv1(x)
- # return x
- model1 = torch.load("nnModel_method1.pth")
- print(model1)
复制代码 完成的模型训练套路(一)
- 建包 train.py 和 model.py
- model.py
- import torch
- from torch import nn
- # 搭建神经网络
- class Nn_Neural_NetWork(nn.Module):
- def __init__(self):
- super().__init__()
- self.model = nn.Sequential(
- nn.Conv2d(3, 32, 5, 1, 2),
- nn.MaxPool2d(2),
- nn.Conv2d(32, 32, 5, 1, 2),
- nn.MaxPool2d(2),
- nn.Conv2d(32, 64, 5, 1, 2),
- nn.MaxPool2d(2),
- nn.Flatten(),
- nn.Linear(64 * 4 * 4, 64),
- nn.Linear(64, 10)
- )
- def forward(self, x):
- x = self.model(x)
- return x
- if __name__ == '__main__':
- # 测试一下模型准确性
- nn_model = Nn_Neural_NetWork()
- input = torch.ones((64, 3, 32, 32))
- output = nn_model(input)
- print(output.shape)
复制代码- import torch
- import torchvision
- from torch import nn
- from torch.utils.data import DataLoader
- from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
- from model import *
- # 准备数据集
- train_data = torchvision.datasets.CIFAR10(root='./data', train=True, transform=torchvision.transforms.ToTensor(),
- download=True)
- test_data = torchvision.datasets.CIFAR10(root='./data', train=False, transform=torchvision.transforms.ToTensor(),
- download=True)
- train_data_size = len(train_data)
- test_data_size = len(test_data)
- print("训练数据集的长度为:{}".format(train_data_size))
- print("测试数据集的长度为:{}".format(test_data_size))
- # 利用DataLoader 来加载数据集
- train_loader = DataLoader(train_data, batch_size=64)
- test_loader = DataLoader(test_data, batch_size=64)
- # 创建网络模型
- nn_model = Nn_Neural_NetWork()
- # 损失函数
- loss_fn = nn.CrossEntropyLoss()
- # 优化器
- # 1e-2 = 1 x (10)^(-2) = 1/100 = 0.01
- learning_rate = 0.01
- optimizer = torch.optim.SGD(nn_model.parameters(), lr=learning_rate)
- # 设置训练网络的一些参数
- # 记录训练的次数
- total_train_step = 0
- # 记录测试的次数
- total_test_step = 0
- # 训练的轮数
- epoch = 10
- for i in range(epoch):
- print("--------第{}轮训练开始-------".format(i + 1))
- # 训练步骤开始
- for data in train_loader:
- imgs, targets = data
- output = nn_model(imgs)
- loss = loss_fn(output, targets)
- # 优化器优化模型
- optimizer.zero_grad()
- loss.backward()
- optimizer.step()
- total_train_step += 1
- print("训练次数: {}, Loss: {}".format(total_train_step, loss.item()))
复制代码 完成的模型训练套路(二)
- train.py
- 增加了tenorboard
- 增加了精确度Accuracy
- import torch
- import torchvision
- from torch import nn
- from torch.utils.data import DataLoader
- from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
- from torch.utils.tensorboard import SummaryWriterfrom p20_model import *# 准备数据集train_data = torchvision.datasets.CIFAR10(root='./data', train=True, transform=torchvision.transforms.ToTensor(), download=True)test_data = torchvision.datasets.CIFAR10(root='./data', train=False, transform=torchvision.transforms.ToTensor(), download=True)train_data_size = len(train_data)test_data_size = len(test_data)print("训练数据集的长度为:{}".format(train_data_size))print("测试数据集的长度为:{}".format(test_data_size))# 利用DataLoader 来加载数据集train_loader = DataLoader(train_data, batch_size=64)test_loader = DataLoader(test_data, batch_size=64)# 创建网络模型nn_model = Nn_Neural_NetWork()# 损失函数loss_fn = nn.CrossEntropyLoss()# 优化器# 1e-2 = 1 x (10)^(-2) = 1/100 = 0.01learning_rate = 0.01optimizer = torch.optim.SGD(nn_model.parameters(), lr=learning_rate)# 设置训练网络的一些参数# 记录训练的次数total_train_step = 0# 记录测试的次数total_test_step = 0# 训练的轮数epoch = 10# (可加可不加) 添加tensorboardwriter = SummaryWriter('./logs_train')for i in range(epoch): print("--------第{}轮训练开始-------".format(i + 1)) # 训练步骤开始 for data in train_loader: imgs, targets = data output = nn_model(imgs) loss = loss_fn(output, targets) # 优化器优化模型 optimizer.zero_grad() loss.backward() optimizer.step() total_train_step += 1 if total_train_step % 100 == 0: print("训练次数: {}, Loss: {}".format(total_train_step, loss.item())) writer.add_scalar("train_loss", loss.item(), total_train_step) # 测试步骤开始 total_test_loss = 0 # 精确度 total_accuracy = 0 with torch.no_grad(): for data in test_loader: imgs, targets = data outputs = nn_model(imgs) loss = loss_fn(outputs, targets) total_test_loss += loss accuracy = (outputs.argmax(1) == targets).sum() total_accuracy += accuracy print("整体测试集上的Loss: {}".format(total_test_loss)) print("整体测试集上的正确率Accuracy: {}".format(total_accuracy / test_data_size)) writer.add_scalar("test_loss", total_test_loss, total_test_step) writer.add_scalar("test_accuracy", total_accuracy / test_data_size, total_test_step) total_test_step += 1 # 保存模型结果 torch.save(nn_model, "model_{}.pth".format(i)) print("模型保存")writer.close()
复制代码 来源:https://www.cnblogs.com/Do1y/p/17819002.html
免责声明:由于采集信息均来自互联网,如果侵犯了您的权益,请联系我们【E-Mail:cb@itdo.tech】 我们会及时删除侵权内容,谢谢合作! |
本帖子中包含更多资源
您需要 登录 才可以下载或查看,没有账号?立即注册
x
|