|
1、前言
当感光元件像素的空间频率与影像中条纹的空间频率接近时,可能产生一种新的波浪形的干扰图案,即所谓的摩尔纹。传感器的网格状纹理构成了一个这样的图案。当图案中的细条状结构与传感器的结构以小角度交叉时,这种效应也会在图像中产生明显的干扰。这种现象在一些细密纹理情况下,比如时尚摄影中的布料上,非常普遍。这种摩尔纹可能通过亮度也可能通过颜色来展现。但是在这里,仅针对在翻拍过程中产生的图像摩尔纹进行处理。
翻拍即从计算机屏幕上捕获图片,或对着屏幕拍摄图片;该方式会在图片上产生摩尔纹现象
论文主要处理思路
- 对原图作Haar变换得到四个下采样特征图(原图下二采样cA、Horizontal横向高频cH、Vertical纵向高频cV、Diagonal斜向高频cD)
- 然后分别利用四个独立的CNN对四个下采样特征图卷积池化,提取特征信息
- 原文随后对三个高频信息卷积池化后的结果的每个channel、每个像素点比对,取max
- 将上一步得到的结果和cA卷积池化后的结果作笛卡尔积
论文地址
2、网络结构复现
如下图所示,本项目复现了论文的图像去摩尔纹方法,并对数据处理部分进行了修改,并且网络结构上也参考了源码中的结构,对图片产生四个下采样特征图,而不是论文中的三个,具体处理方式大家可以参考一下网络结构。
- import math
- import paddle
- import paddle.nn as nn
- import paddle.nn.functional as F
- # import pywt
- from paddle.nn import Linear, Dropout, ReLU
- from paddle.nn import Conv2D, MaxPool2D
- class mcnn(nn.Layer):
- def __init__(self, num_classes=1000):
- super(mcnn, self).__init__()
- self.num_classes = num_classes
- self._conv1_LL = Conv2D(3,32,7,stride=2,padding=1,)
- # self.bn1_LL = nn.BatchNorm2D(128)
- self._conv1_LH = Conv2D(3,32,7,stride=2,padding=1,)
- # self.bn1_LH = nn.BatchNorm2D(256)
- self._conv1_HL = Conv2D(3,32,7,stride=2,padding=1,)
- # self.bn1_HL = nn.BatchNorm2D(512)
- self._conv1_HH = Conv2D(3,32,7,stride=2,padding=1,)
- # self.bn1_HH = nn.BatchNorm2D(256)
- self.pool_1_LL = nn.MaxPool2D(kernel_size=2,stride=2, padding=0)
- self.pool_1_LH = nn.MaxPool2D(kernel_size=2,stride=2, padding=0)
- self.pool_1_HL = nn.MaxPool2D(kernel_size=2,stride=2, padding=0)
- self.pool_1_HH = nn.MaxPool2D(kernel_size=2,stride=2, padding=0)
- self._conv2 = Conv2D(32,16,3,stride=2,padding=1,)
- self.pool_2 = nn.MaxPool2D(kernel_size=2,stride=2, padding=0)
- self.dropout2 = Dropout(p=0.5)
- self._conv3 = Conv2D(16,32,3,stride=2,padding=1,)
- self.pool_3 = nn.MaxPool2D(kernel_size=2,stride=2, padding=0)
- self._conv4 = Conv2D(32,32,3,stride=2,padding=1,)
- self.pool_4 = nn.MaxPool2D(kernel_size=2,stride=2, padding=0)
- self.dropout4 = Dropout(p=0.5)
- # self.bn1_HH = nn.BatchNorm1D(256)
- self._fc1 = Linear(in_features=64,out_features=num_classes)
- self.dropout5 = Dropout(p=0.5)
- self._fc2 = Linear(in_features=2,out_features=num_classes)
- def forward(self, inputs1, inputs2, inputs3, inputs4):
- x1_LL = self._conv1_LL(inputs1)
- x1_LL = F.relu(x1_LL)
- x1_LH = self._conv1_LH(inputs2)
- x1_LH = F.relu(x1_LH)
- x1_HL = self._conv1_HL(inputs3)
- x1_HL = F.relu(x1_HL)
- x1_HH = self._conv1_HH(inputs4)
- x1_HH = F.relu(x1_HH)
- pool_x1_LL = self.pool_1_LL(x1_LL)
- pool_x1_LH = self.pool_1_LH(x1_LH)
- pool_x1_HL = self.pool_1_HL(x1_HL)
- pool_x1_HH = self.pool_1_HH(x1_HH)
- temp = paddle.maximum(pool_x1_LH, pool_x1_HL)
- avg_LH_HL_HH = paddle.maximum(temp, pool_x1_HH)
- inp_merged = paddle.multiply(pool_x1_LL, avg_LH_HL_HH)
- x2 = self._conv2(inp_merged)
- x2 = F.relu(x2)
- x2 = self.pool_2(x2)
- x2 = self.dropout2(x2)
- x3 = self._conv3(x2)
- x3 = F.relu(x3)
- x3 = self.pool_3(x3)
- x4 = self._conv4(x3)
- x4 = F.relu(x4)
- x4 = self.pool_4(x4)
- x4 = self.dropout4(x4)
- x4 = paddle.flatten(x4, start_axis=1, stop_axis=-1)
- x5 = self._fc1(x4)
- x5 = self.dropout5(x5)
- out = self._fc2(x5)
- return out
- model_res = mcnn(num_classes=2)
- paddle.summary(model_res,[(1,3,512,384),(1,3,512,384),(1,3,512,384),(1,3,512,384)])
复制代码- ---------------------------------------------------------------------------
- Layer (type) Input Shape Output Shape Param #
- ===========================================================================
- Conv2D-1 [[1, 3, 512, 384]] [1, 32, 254, 190] 4,736
- Conv2D-2 [[1, 3, 512, 384]] [1, 32, 254, 190] 4,736
- Conv2D-3 [[1, 3, 512, 384]] [1, 32, 254, 190] 4,736
- Conv2D-4 [[1, 3, 512, 384]] [1, 32, 254, 190] 4,736
- MaxPool2D-1 [[1, 32, 254, 190]] [1, 32, 127, 95] 0
- MaxPool2D-2 [[1, 32, 254, 190]] [1, 32, 127, 95] 0
- MaxPool2D-3 [[1, 32, 254, 190]] [1, 32, 127, 95] 0
- MaxPool2D-4 [[1, 32, 254, 190]] [1, 32, 127, 95] 0
- Conv2D-5 [[1, 32, 127, 95]] [1, 16, 64, 48] 4,624
- MaxPool2D-5 [[1, 16, 64, 48]] [1, 16, 32, 24] 0
- Dropout-1 [[1, 16, 32, 24]] [1, 16, 32, 24] 0
- Conv2D-6 [[1, 16, 32, 24]] [1, 32, 16, 12] 4,640
- MaxPool2D-6 [[1, 32, 16, 12]] [1, 32, 8, 6] 0
- Conv2D-7 [[1, 32, 8, 6]] [1, 32, 4, 3] 9,248
- MaxPool2D-7 [[1, 32, 4, 3]] [1, 32, 2, 1] 0
- Dropout-2 [[1, 32, 2, 1]] [1, 32, 2, 1] 0
- Linear-1 [[1, 64]] [1, 2] 130
- Dropout-3 [[1, 2]] [1, 2] 0
- Linear-2 [[1, 2]] [1, 2] 6
- ===========================================================================
- Total params: 37,592
- Trainable params: 37,592
- Non-trainable params: 0
- ---------------------------------------------------------------------------
- Input size (MB): 9.00
- Forward/backward pass size (MB): 59.54
- Params size (MB): 0.14
- Estimated Total Size (MB): 68.68
- ---------------------------------------------------------------------------
- {'total_params': 37592, 'trainable_params': 37592}
复制代码 3、数据预处理
与源代码不同的是,本项目将图像的小波分解部分集成在了数据读取部分,即改为了线上进行小波分解,而不是源代码中的线下进行小波分解并且保存图片。首先,定义小波分解的函数- import numpy as np
- import pywt
- def splitFreqBands(img, levRows, levCols):
- halfRow = int(levRows/2)
- halfCol = int(levCols/2)
- LL = img[0:halfRow, 0:halfCol]
- LH = img[0:halfRow, halfCol:levCols]
- HL = img[halfRow:levRows, 0:halfCol]
- HH = img[halfRow:levRows, halfCol:levCols]
- return LL, LH, HL, HH
- def haarDWT1D(data, length):
- avg0 = 0.5;
- avg1 = 0.5;
- dif0 = 0.5;
- dif1 = -0.5;
- temp = np.empty_like(data)
- # temp = temp.astype(float)
- temp = temp.astype(np.uint8)
- h = int(length/2)
- for i in range(h):
- k = i*2
- temp[i] = data[k] * avg0 + data[k + 1] * avg1;
- temp[i + h] = data[k] * dif0 + data[k + 1] * dif1;
- data[:] = temp
- # computes the homography coefficients for PIL.Image.transform using point correspondences
- def fwdHaarDWT2D(img):
- img = np.array(img)
- levRows = img.shape[0];
- levCols = img.shape[1];
- # img = img.astype(float)
- img = img.astype(np.uint8)
- for i in range(levRows):
- row = img[i,:]
- haarDWT1D(row, levCols)
- img[i,:] = row
- for j in range(levCols):
- col = img[:,j]
- haarDWT1D(col, levRows)
- img[:,j] = col
- return splitFreqBands(img, levRows, levCols)
复制代码- !cd "data/data188843/" && unzip -q 'total_images.zip'
复制代码- import os
- recapture_keys = [ 'ValidationMoire']
- original_keys = ['ValidationClear']
- def get_image_label_from_folder_name(folder_name):
- """
- :param folder_name:
- :return:
- """
- for key in original_keys:
- if key in folder_name:
- return 'original'
- for key in recapture_keys:
- if key in folder_name:
- return 'recapture'
- return 'unclear'
- label_name2label_id = {
- 'original': 0,
- 'recapture': 1,}
- src_image_dir = "data/data188843/total_images"
- dst_file = "data/data188843/total_images/train.txt"
- image_folder = [file for file in os.listdir(src_image_dir)]
- print(image_folder)
- image_anno_list = []
- for folder in image_folder:
- label_name = get_image_label_from_folder_name(folder)
- # label_id = label_name2label_id.get(label_name, 0)
- label_id = label_name2label_id[label_name]
- folder_path = os.path.join(src_image_dir, folder)
- image_file_list = [file for file in os.listdir(folder_path) if
- file.endswith('.jpg') or file.endswith('.jpeg') or
- file.endswith('.JPG') or file.endswith('.JPEG') or file.endswith('.png')]
- for image_file in image_file_list:
- # if need_root_dir:
- # image_path = os.path.join(folder_path, image_file)
- # else:
- image_path = image_file
- image_anno_list.append(folder +"/"+image_path +"\t"+ str(label_id) + '\n')
- dst_path = os.path.dirname(src_image_dir)
- if not os.path.exists(dst_path):
- os.makedirs(dst_path)
- with open(dst_file, 'w') as fd:
- fd.writelines(image_anno_list)
复制代码- import paddle
- import numpy as np
- import pandas as pd
- import PIL.Image as Image
- from paddle.vision import transforms
- # from haar2D import fwdHaarDWT2D
- paddle.disable_static()
- # 定义数据预处理
- data_transforms = transforms.Compose([
- transforms.Resize(size=(448,448)),
- transforms.ToTensor(), # transpose操作 + (img / 255)
- # transforms.Normalize( # 减均值 除标准差
- # mean=[0.31169346, 0.25506335, 0.12432463],
- # std=[0.34042713, 0.29819837, 0.1375536])
- #计算过程:output[channel] = (input[channel] - mean[channel]) / std[channel]
- ])
- # 构建Dataset
- class MyDataset(paddle.io.Dataset):
- """
- 步骤一:继承paddle.io.Dataset类
- """
- def __init__(self, train_img_list, val_img_list, train_label_list, val_label_list, mode='train', ):
- """
- 步骤二:实现构造函数,定义数据读取方式,划分训练和测试数据集
- """
- super(MyDataset, self).__init__()
- self.img = []
- self.label = []
- # 借助pandas读csv的库
- self.train_images = train_img_list
- self.test_images = val_img_list
- self.train_label = train_label_list
- self.test_label = val_label_list
- if mode == 'train':
- # 读train_images的数据
- for img,la in zip(self.train_images, self.train_label):
- self.img.append('/home/aistudio/data/data188843/total_images/'+img)
- self.label.append(paddle.to_tensor(int(la), dtype='int64'))
- else:
- # 读test_images的数据
- for img,la in zip(self.test_images, self.test_label):
- self.img.append('/home/aistudio/data/data188843/total_images/'+img)
- self.label.append(paddle.to_tensor(int(la), dtype='int64'))
- def load_img(self, image_path):
- # 实际使用时使用Pillow相关库进行图片读取即可,这里我们对数据先做个模拟
- image = Image.open(image_path).convert('RGB')
- # image = data_transforms(image)
- return image
- def __getitem__(self, index):
- """
- 步骤三:实现__getitem__方法,定义指定index时如何获取数据,并返回单条数据(训练数据,对应的标签)
- """
- image = self.load_img(self.img[index])
- LL, LH, HL, HH = fwdHaarDWT2D(image)
- label = self.label[index]
- # print(LL.shape)
- # print(LH.shape)
- # print(HL.shape)
- # print(HH.shape)
- LL = data_transforms(LL)
- LH = data_transforms(LH)
- HL = data_transforms(HL)
- HH = data_transforms(HH)
- print(type(LL))
- print(LL.dtype)
- return LL, LH, HL, HH, np.array(label, dtype='int64')
- def __len__(self):
- """
- 步骤四:实现__len__方法,返回数据集总数目
- """
- return len(self.img)
- image_file_txt = '/home/aistudio/data/data188843/total_images/train.txt'
- with open(image_file_txt) as fd:
- lines = fd.readlines()
- train_img_list = list()
- train_label_list = list()
- for line in lines:
- split_list = line.strip().split()
- image_name, label_id = split_list
- train_img_list.append(image_name)
- train_label_list.append(label_id)
- # print(train_img_list)
- # print(train_label_list)
- # 测试定义的数据集
- train_dataset = MyDataset(mode='train',train_label_list=train_label_list, train_img_list=train_img_list, val_img_list=train_img_list, val_label_list=train_label_list)
- # test_dataset = MyDataset(mode='test')
- # 构建训练集数据加载器
- train_loader = paddle.io.DataLoader(train_dataset, batch_size=2, shuffle=True)
- # 构建测试集数据加载器
- valid_loader = paddle.io.DataLoader(train_dataset, batch_size=2, shuffle=True)
- print('=============train dataset=============')
- for LL, LH, HL, HH, label in train_dataset:
- print('label: {}'.format(label))
- break
复制代码 4、模型训练
- model2 = paddle.Model(model_res)
- model2.prepare(optimizer=paddle.optimizer.Adam(parameters=model2.parameters()),
- loss=nn.CrossEntropyLoss(),
- metrics=paddle.metric.Accuracy())
- model2.fit(train_loader,
- valid_loader,
- epochs=5,
- verbose=1,
- )
复制代码 总结
本项目主要介绍了如何使用卷积神经网络去检测翻拍图片,主要为摩尔纹图片;其主要创新点在于网络结构上,将图片的高低频信息分开处理。
在本项目中,CNN 仅使用 1 级小波分解进行训练。 可以探索对多级小波分解网络精度的影响。 CNN 模型可以用更多更难的例子和更深的网络进行训练,更多关于python 图片去摩尔纹的资料请关注脚本之家其它相关文章!
来源:https://www.jb51.net/article/276395.htm
免责声明:由于采集信息均来自互联网,如果侵犯了您的权益,请联系我们【E-Mail:cb@itdo.tech】 我们会及时删除侵权内容,谢谢合作! |
本帖子中包含更多资源
您需要 登录 才可以下载或查看,没有账号?立即注册
x
|