|
前言
线程是操作系统能够进行运算调度的最小单位,它被包含在进程之中,是进程中的实际运作单位。由于CPython的GIL限制,多线程实际为单线程,大多只用来处理IO密集型任务。
Python一般用标准库threading来进行多线程编程。
基本使用
- 方式1,创建threading.Thread类的示例
- import threading
- import time
- def task1(counter: int):
- print(f"thread: {threading.current_thread().name}, args: {counter}, start time: {time.strftime('%F %T')}")
- num = counter
- while num > 0:
- time.sleep(3)
- num -= 1
- print(f"thread: {threading.current_thread().name}, args: {counter}, end time: {time.strftime('%F %T')}")
- if __name__ == "__main__":
- print(f"main thread: {threading.current_thread().name}, start time: {time.strftime('%F %T')}")
- # 创建三个线程
- t1 = threading.Thread(target=task1, args=(7,))
- t2 = threading.Thread(target=task1, args=(5,))
- t3 = threading.Thread(target=task1, args=(3,))
- # 启动线程
- t1.start()
- t2.start()
- t3.start()
- # join() 用于阻塞主线程, 等待子线程执行完毕
- t1.join()
- t2.join()
- t3.join()
- print(f"main thread: {threading.current_thread().name}, end time: {time.strftime('%F %T')}")
复制代码 执行输出示例- main thread: MainThread, start time: 2024-10-26 12:42:37
- thread: Thread-1 (task1), args: 7, start time: 2024-10-26 12:42:37
- thread: Thread-2 (task1), args: 5, start time: 2024-10-26 12:42:37
- thread: Thread-3 (task1), args: 3, start time: 2024-10-26 12:42:37
- thread: Thread-3 (task1), args: 3, end time: 2024-10-26 12:42:46
- thread: Thread-2 (task1), args: 5, end time: 2024-10-26 12:42:52
- thread: Thread-1 (task1), args: 7, end time: 2024-10-26 12:42:58
- main thread: MainThread, end time: 2024-10-26 12:42:58
复制代码
- 方式2,继承threading.Thread类,重写run()和__init__()方法
- import threading
- import time
- class MyThread(threading.Thread):
- def __init__(self, counter: int):
- super().__init__()
- self.counter = counter
- def run(self):
- print(f"thread: {threading.current_thread().name}, args: {self.counter}, start time: {time.strftime('%F %T')}")
- num = self.counter
- while num > 0:
- time.sleep(3)
- num -= 1
- print(f"thread: {threading.current_thread().name}, args: {self.counter}, end time: {time.strftime('%F %T')}")
- if __name__ == "__main__":
- print(f"main thread: {threading.current_thread().name}, start time: {time.strftime('%F %T')}")
- # 创建三个线程
- t1 = MyThread(7)
- t2 = MyThread(5)
- t3 = MyThread(3)
- # 启动线程
- t1.start()
- t2.start()
- t3.start()
- # join() 用于阻塞主线程, 等待子线程执行完毕
- t1.join()
- t2.join()
- t3.join()
- print(f"main thread: {threading.current_thread().name}, end time: {time.strftime('%F %T')}")
复制代码 继承threading.Thread类也可以写成这样,调用外部函数。- import threading
- import time
- def task1(counter: int):
- print(f"thread: {threading.current_thread().name}, args: {counter}, start time: {time.strftime('%F %T')}")
- num = counter
- while num > 0:
- time.sleep(3)
- num -= 1
- print(f"thread: {threading.current_thread().name}, args: {counter}, end time: {time.strftime('%F %T')}")
- class MyThread(threading.Thread):
- def __init__(self, target, args: tuple):
- super().__init__()
- self.target = target
- self.args = args
-
- def run(self):
- self.target(*self.args)
- if __name__ == "__main__":
- print(f"main thread: {threading.current_thread().name}, start time: {time.strftime('%F %T')}")
- # 创建三个线程
- t1 = MyThread(target=task1, args=(7,))
- t2 = MyThread(target=task1, args=(5,))
- t3 = MyThread(target=task1, args=(3,))
- # 启动线程
- t1.start()
- t2.start()
- t3.start()
- # join() 用于阻塞主线程, 等待子线程执行完毕
- t1.join()
- t2.join()
- t3.join()
- print(f"main thread: {threading.current_thread().name}, end time: {time.strftime('%F %T')}")
复制代码 多线程同步
如果多个线程共同对某个数据修改,则可能出现不可预料的后果,这时候就需要某些同步机制。比如如下代码,结果是随机的(个人电脑用python3.13实测结果都是0,而低版本的python3.6运行结果的确是随机的)- import threading
- import time
- num = 0
- def task1(counter: int):
- print(f"thread: {threading.current_thread().name}, args: {counter}, start time: {time.strftime('%F %T')}")
- global num
- for _ in range(100000000):
- num = num + counter
- num = num - counter
- print(f"thread: {threading.current_thread().name}, args: {counter}, end time: {time.strftime('%F %T')}")
- if __name__ == "__main__":
- print(f"main thread: {threading.current_thread().name}, start time: {time.strftime('%F %T')}")
- # 创建三个线程
- t1 = threading.Thread(target=task1, args=(7,))
- t2 = threading.Thread(target=task1, args=(5,))
- t3 = threading.Thread(target=task1, args=(3,))
- t4 = threading.Thread(target=task1, args=(6,))
- t5 = threading.Thread(target=task1, args=(8,))
- # 启动线程
- t1.start()
- t2.start()
- t3.start()
- t4.start()
- t5.start()
- # join() 用于阻塞主线程, 等待子线程执行完毕
- t1.join()
- t2.join()
- t3.join()
- t4.join()
- t5.join()
-
- print(f"num: {num}")
- print(f"main thread: {threading.current_thread().name}, end time: {time.strftime('%F %T')}")
复制代码 Lock-锁
使用互斥锁可以在一个线程访问数据时,拒绝其它线程访问,直到解锁。threading.Thread中的Lock()和Rlock()可以提供锁功能。- import threading
- import time
- num = 0
- mutex = threading.Lock()
- def task1(counter: int):
- print(f"thread: {threading.current_thread().name}, args: {counter}, start time: {time.strftime('%F %T')}")
- global num
- mutex.acquire()
- for _ in range(100000):
- num = num + counter
- num = num - counter
- mutex.release()
- print(f"thread: {threading.current_thread().name}, args: {counter}, end time: {time.strftime('%F %T')}")
- if __name__ == "__main__":
- print(f"main thread: {threading.current_thread().name}, start time: {time.strftime('%F %T')}")
- # 创建三个线程
- t1 = threading.Thread(target=task1, args=(7,))
- t2 = threading.Thread(target=task1, args=(5,))
- t3 = threading.Thread(target=task1, args=(3,))
- # 启动线程
- t1.start()
- t2.start()
- t3.start()
- # join() 用于阻塞主线程, 等待子线程执行完毕
- t1.join()
- t2.join()
- t3.join()
-
- print(f"num: {num}")
- print(f"main thread: {threading.current_thread().name}, end time: {time.strftime('%F %T')}")
复制代码 Semaphore-信号量
互斥锁是只允许一个线程访问共享数据,而信号量是同时允许一定数量的线程访问共享数据。比如银行有5个窗口,允许同时有5个人办理业务,后面的人只能等待,待柜台有空闲才可以进入。- import threading
- import time
- from random import randint
- semaphore = threading.BoundedSemaphore(5)
- def business(name: str):
- semaphore.acquire()
- print(f"{time.strftime('%F %T')} {name} is handling")
- time.sleep(randint(3, 10))
- print(f"{time.strftime('%F %T')} {name} is done")
- semaphore.release()
- if __name__ == "__main__":
- print(f"main thread: {threading.current_thread().name}, start time: {time.strftime('%F %T')}")
- threads = []
- for i in range(10):
- t = threading.Thread(target=business, args=(f"thread-{i}",))
- threads.append(t)
- for t in threads:
- t.start()
- for t in threads:
- t.join()
-
- print(f"main thread: {threading.current_thread().name}, end time: {time.strftime('%F %T')}")
复制代码 执行输出- main thread: MainThread, start time: 2024-10-26 17:40:10
- 2024-10-26 17:40:10 thread-0 is handling
- 2024-10-26 17:40:10 thread-1 is handling
- 2024-10-26 17:40:10 thread-2 is handling
- 2024-10-26 17:40:10 thread-3 is handling
- 2024-10-26 17:40:10 thread-4 is handling
- 2024-10-26 17:40:15 thread-2 is done
- 2024-10-26 17:40:15 thread-5 is handling
- 2024-10-26 17:40:16 thread-0 is done
- 2024-10-26 17:40:16 thread-6 is handling
- 2024-10-26 17:40:19 thread-3 is done
- 2024-10-26 17:40:19 thread-4 is done
- 2024-10-26 17:40:19 thread-7 is handling
- 2024-10-26 17:40:19 thread-8 is handling
- 2024-10-26 17:40:20 thread-1 is done
- 2024-10-26 17:40:20 thread-9 is handling
- 2024-10-26 17:40:21 thread-6 is done
- 2024-10-26 17:40:23 thread-7 is done
- 2024-10-26 17:40:24 thread-5 is done
- 2024-10-26 17:40:24 thread-8 is done
- 2024-10-26 17:40:30 thread-9 is done
- main thread: MainThread, end time: 2024-10-26 17:40:30
复制代码 Condition-条件对象
Condition对象能让一个线程A停下来,等待其他线程,其他线程通知后线程A继续运行。- import threading
- import time
- import random
- class Employee(threading.Thread):
- def __init__(self, username: str, cond: threading.Condition):
- self.username = username
- self.cond = cond
- super().__init__()
- def run(self):
- with self.cond:
- print(f"{time.strftime('%F %T')} {self.username} 到达公司")
- self.cond.wait() # 等待通知
- print(f"{time.strftime('%F %T')} {self.username} 开始工作")
- time.sleep(random.randint(1, 5))
- print(f"{time.strftime('%F %T')} {self.username} 工作完成")
- class Boss(threading.Thread):
- def __init__(self, username: str, cond: threading.Condition):
- self.username = username
- self.cond = cond
- super().__init__()
- def run(self):
- with self.cond:
- print(f"{time.strftime('%F %T')} {self.username} 发出通知")
- self.cond.notify_all() # 通知所有线程
- time.sleep(2)
- if __name__ == "__main__":
- cond = threading.Condition()
- boss = Boss("老王", cond)
-
- employees = []
- for i in range(5):
- employees.append(Employee(f"员工{i}", cond))
- for employee in employees:
- employee.start()
- boss.start()
- boss.join()
- for employee in employees:
- employee.join()
复制代码 执行输出- 2024-10-26 21:16:20 员工0 到达公司
- 2024-10-26 21:16:20 员工1 到达公司
- 2024-10-26 21:16:20 员工2 到达公司
- 2024-10-26 21:16:20 员工3 到达公司
- 2024-10-26 21:16:20 员工4 到达公司
- 2024-10-26 21:16:20 老王 发出通知
- 2024-10-26 21:16:20 员工4 开始工作
- 2024-10-26 21:16:23 员工4 工作完成
- 2024-10-26 21:16:23 员工1 开始工作
- 2024-10-26 21:16:28 员工1 工作完成
- 2024-10-26 21:16:28 员工2 开始工作
- 2024-10-26 21:16:30 员工2 工作完成
- 2024-10-26 21:16:30 员工0 开始工作
- 2024-10-26 21:16:31 员工0 工作完成
- 2024-10-26 21:16:31 员工3 开始工作
- 2024-10-26 21:16:32 员工3 工作完成
复制代码 Event-事件
在 Python 的 threading 模块中,Event 是一个线程同步原语,用于在多个线程之间进行简单的通信。Event 对象维护一个内部标志,线程可以使用 wait() 方法阻塞,直到另一个线程调用 set() 方法将标志设置为 True。一旦标志被设置为 True,所有等待的线程将被唤醒并继续执行。
Event 的主要方法
- set():将事件的内部标志设置为 True,并唤醒所有等待的线程。
- clear():将事件的内部标志设置为 False。
- is_set():返回事件的内部标志是否为 True。
- wait(timeout=None):如果事件的内部标志为 False,则阻塞当前线程,直到标志被设置为 True 或超时(如果指定了 timeout)。
- import threading
- import time
- import random
- class Employee(threading.Thread):
- def __init__(self, username: str, cond: threading.Event):
- self.username = username
- self.cond = cond
- super().__init__()
- def run(self):
- print(f"{time.strftime('%F %T')} {self.username} 到达公司")
- self.cond.wait() # 等待事件标志为True
- print(f"{time.strftime('%F %T')} {self.username} 开始工作")
- time.sleep(random.randint(1, 5))
- print(f"{time.strftime('%F %T')} {self.username} 工作完成")
- class Boss(threading.Thread):
- def __init__(self, username: str, cond: threading.Event):
- self.username = username
- self.cond = cond
- super().__init__()
- def run(self):
- print(f"{time.strftime('%F %T')} {self.username} 发出通知")
- self.cond.set()
- if __name__ == "__main__":
- cond = threading.Event()
- boss = Boss("老王", cond)
-
- employees = []
- for i in range(5):
- employees.append(Employee(f"员工{i}", cond))
- for employee in employees:
- employee.start()
- boss.start()
- boss.join()
- for employee in employees:
- employee.join()
复制代码 执行输出- 2024-10-26 21:22:28 员工0 到达公司
- 2024-10-26 21:22:28 员工1 到达公司
- 2024-10-26 21:22:28 员工2 到达公司
- 2024-10-26 21:22:28 员工3 到达公司
- 2024-10-26 21:22:28 员工4 到达公司
- 2024-10-26 21:22:28 老王 发出通知
- 2024-10-26 21:22:28 员工0 开始工作
- 2024-10-26 21:22:28 员工1 开始工作
- 2024-10-26 21:22:28 员工3 开始工作
- 2024-10-26 21:22:28 员工4 开始工作
- 2024-10-26 21:22:28 员工2 开始工作
- 2024-10-26 21:22:30 员工3 工作完成
- 2024-10-26 21:22:31 员工4 工作完成
- 2024-10-26 21:22:31 员工2 工作完成
- 2024-10-26 21:22:32 员工0 工作完成
- 2024-10-26 21:22:32 员工1 工作完成
复制代码 使用队列
Python的queue模块提供同步、线程安全的队列类。以下示例为使用queue实现的生产消费者模型- import threading
- import time
- import random
- import queue
- class Producer(threading.Thread):
- """多线程生产者类."""
- def __init__(
- self, tname: str, channel: queue.Queue, done: threading.Event
- ):
- self.tname = tname
- self.channel = channel
- self.done = done
- super().__init__()
- def run(self) -> None:
- """Method representing the thread's activity."""
- while True:
- if self.done.is_set():
- print(
- f"{time.strftime('%F %T')} {self.tname} 收到停止信号事件"
- )
- break
- if self.channel.full():
- print(
- f"{time.strftime('%F %T')} {self.tname} report: 队列已满, 全部停止生产"
- )
- self.done.set()
- else:
- num = random.randint(100, 1000)
- self.channel.put(f"{self.tname}-{num}")
- print(
- f"{time.strftime('%F %T')} {self.tname} 生成数据 {num}, queue size: {self.channel.qsize()}"
- )
- time.sleep(random.randint(1, 5))
- class Consumer(threading.Thread):
- """多线程消费者类."""
- def __init__(
- self, tname: str, channel: queue.Queue, done: threading.Event
- ):
- self.tname = tname
- self.channel = channel
- self.done = done
- self.counter = 0
- super().__init__()
- def run(self) -> None:
- """Method representing the thread's activity."""
- while True:
- if self.done.is_set():
- print(
- f"{time.strftime('%F %T')} {self.tname} 收到停止信号事件"
- )
- break
- if self.counter >= 3:
- print(
- f"{time.strftime('%F %T')} {self.tname} report: 全部停止消费"
- )
- self.done.set()
- continue
- if self.channel.empty():
- print(
- f"{time.strftime('%F %T')} {self.tname} report: 队列为空, counter: {self.counter}"
- )
- self.counter += 1
- time.sleep(1)
- continue
- else:
- data = self.channel.get()
- print(
- f"{time.strftime('%F %T')} {self.tname} 消费数据 {data}, queue size: {self.channel.qsize()}"
- )
- time.sleep(random.randint(1, 5))
- self.counter = 0
- if __name__ == "__main__":
- done_p = threading.Event()
- done_c = threading.Event()
- channel = queue.Queue(30)
- threads_producer = []
- threads_consumer = []
- for i in range(8):
- threads_producer.append(Producer(f"producer-{i}", channel, done_p))
- for i in range(6):
- threads_consumer.append(Consumer(f"consumer-{i}", channel, done_c))
- for t in threads_producer:
- t.start()
- for t in threads_consumer:
- t.start()
- for t in threads_producer:
- t.join()
- for t in threads_consumer:
- t.join()
复制代码 线程池
在面向对象编程中,创建和销毁对象是很费时间的,因为创建一个对象要获取内存资源或其他更多资源。在多线程程序中,生成一个新线程之后销毁,然后再创建一个,这种方式就很低效。池化多线程,也就是线程池就为此而生。
将任务添加到线程池中,线程池会自动指定一个空闲的线程去执行任务,当超过最大线程数时,任务需要等待有新的空闲线程才会被执行。Python一般可以使用multiprocessing模块中的Pool来创建线程池。- import time
- from multiprocessing.dummy import Pool as ThreadPool
- def foo(n):
- time.sleep(2)
- if __name__ == "__main__":
- start = time.time()
- for n in range(5):
- foo(n)
- print("single thread time: ", time.time() - start)
- start = time.time()
- t_pool = ThreadPool(processes=5) # 创建线程池, 指定池中的线程数为5(默认为CPU数)
- rst = t_pool.map(foo, range(5)) # 使用map为每个元素应用到foo函数
- t_pool.close() # 阻止任何新的任务提交到线程池
- t_pool.join() # 等待所有已提交的任务完成
- print("thread pool time: ", time.time() - start)
复制代码 线程池执行器
python的内置模块concurrent.futures提供了ThreadPoolExecutor类。这个类结合了线程和队列的优势,可以用来平行执行任务。- import time
- from random import randint
- from concurrent.futures import ThreadPoolExecutor
- def foo() -> None:
- time.sleep(2)
- return randint(1,100)
- if __name__ == "__main__":
- start = time.time()
- futures = []
- with ThreadPoolExecutor(max_workers=5) as executor:
- for n in range(10):
- futures.append(executor.submit(foo)) # Fan out
-
- for future in futures: # Fan in
- print(future.result())
- print("thread pool executor time: ", time.time() - start)
复制代码 执行输出- 44
- 19
- 86
- 48
- 35
- 74
- 59
- 99
- 58
- 53
- thread pool executor time: 4.001955032348633
复制代码 ThreadPoolExecutor类的最大优点在于:如果调用者通过submit方法把某项任务交给它执行,那么会获得一个与该任务相对应的Future实例,当调用者在这个实例上通过result方法获取执行结果时,ThreadPoolExecutor会把它在执行任务的过程中所遇到的异常自动抛给调用者。而ThreadPoolExecutor类的缺点是IO并行能力不高,即便把max_worker设为100,也无法高效处理任务。更高需求的IO任务可以考虑换异步协程方案。
参考
- 郑征《Python自动化运维快速入门》清华大学出版社
- Brett Slatkin《Effective Python》(2nd) 机械工业出版社
来源:https://www.cnblogs.com/XY-Heruo/p/18514316
免责声明:由于采集信息均来自互联网,如果侵犯了您的权益,请联系我们【E-Mail:cb@itdo.tech】 我们会及时删除侵权内容,谢谢合作! |
|